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1 General introduction

This thesis is the result of work done within the NWO ToKeN project: Intelligent Content-

Based Image Retrieval (CBIR). The project’s name is Eidetic. According to Webster’s dictio-

nary [181], Eidetic means: “marked by or involving extraordinarily accurate and vivid recall

especially of visual images”. The latter should be achieved by intelligent CBIR techniques.

Intelligence is the ability to learn, understand, or deal with new or trying situations [181]

(e.g., recognizing objects in images). CBIR techniques aim to describe the content of the im-

age material. We will approach the latter from both the perspective of human vision and of

computer vision.

1.1 Human vision versus Computer vision

Par excellence, humans can function well in complex environments, which provide them

with a range of multi-modal cues. So far, entities that comprise artificial intelligence can-

not function properly if at all in such an environment. Therefore, human intelligence and,

moreover, human cognitive capabilities are the baseline for the development of intelligent

software applications, such as CBIR engines.

We know that the human visual system is powerful. “It endows us with the ability

to recover enormous details about our visual environment. Nevertheless, as a plethora of

visual illusions demonstrates, it is far from accurate. Today we interpret many of these

illusions not as an expression of the limits or failures of the visual system. Rather, they are

the results of a highly developed and optimized representational process in which the visual

system does not simply provide an internal one-to-one copy of the external visual world.

Instead, the visual system is equipped with specific encoding mechanisms to optimize the

use of precious processing resources by enhancing relevant features and providing only a

sketchy representation of the less relevant aspects of our visual environment.” [297] In an

ideal situation, computer vision should have similar characteristics.

From literature in neuroscience and psychology, it is known that the human visual

system utilizes features such as color, texture, and shape in recognizing objects, the envi-

ronment, and photos or paintings [93, 180, 239]. In addition, phenomena such as occlusion

and subjective contours are topic of research. Research on these features and phenomena is

merely done in controlled experimental environments. Control up to a large extent has the

advantage that the influence of one factor on the percept can be examined. The drawback is

that the ecological validity of such research is often questionable.

Especially on the long run, fundamental research is of great importance for applica-

tion centered research, despite all its limitations. With such research, principles of human

information processing can be unraveled step by step. Where in human vision research,

this approach is the standard, for computer vision pragmatic considerations dominate. The
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latter is not surprising. The core aim of computer vision in general is not to model human

vision but to be inspired by human vision: An efficient approach for practical problems

within a limited domain.

Let us provide two examples which illustrate the strength of human vision: (i) a paint-

ing cannot be described with computer vision techniques like humans can, who can abstract

from detail and ‘feel’ the expressed emotion through their senses in combination with associ-

ations derived from memory [315] and (ii) although computer vision techniques are utilized

for the automatic classification of mammography images, the performance of the classifiers

developed so far is far from good. Consequently, most medical imaging techniques are used

as computer aided diagnosis instead of replacing the human diagnosis [278].

On the other hand, for certain tasks computer vision algorithms outperform human

vision by far. When the exact percentage of a specific type of red (a R, G, B value) in an

image has to be determined, a computer can provide an exact percentage, where a human

can only estimate it. The latter is more complicated when a fuzzy description of a color

(e.g., red) is provided and when the results are judged by humans. Then the question arises:

what is red? Are certain pixels in all circumstances judged as red by humans or can they be

judged as being black, for example, when the environment or the light source changes? The

latter problems are denoted as the problem of color constancy [321].

Above, we have introduced color as feature in visual information processing. Now,

let us illustrate the influence of patterns or texture on the perceived color, where we de-

fine pixels as “any of the small discrete elements that together constitute an image (as on a

television or computer screen) [181]”. For example, a square perceived as orange can exist

without orange pixels. It can be generated by regularly alternating red and yellow pixels

(so called dithering), which create the orange percept, as is know from computer graphics

and human perception studies. In contrast, from a physics/engineering point of view, the

R, G, and B channel of a CRT tube tell us that 66.6% of the square is red and 33.3% is green.

The latter example can be denoted as low level texture. At a higher level, texture is more

clearly visible; e.g., a brick wall, a field of grass, wood, human skin. So, as Faugeras and

Pratt already noted 25 years ago [83]: “The basic pattern and repetition frequency of a tex-

ture sample could be perceptually invisible, although quantitatively present.” Whether or

not a pattern should be analyzed as such depends on the application.

In computer vision, color and texture features are also utilized for shape extraction.

Hereby, the representation of both features is of paramount importance. Until now, the

results are promising but far from good. In addition, shape extraction is computationally

expensive and, therefore, not usable for real time image processing and computer vision

tasks. Humans are able to detect shape and process it with a high accuracy. In most cases, the

human visual processing system works perfectly. However, it can be tricked. For example,

artists such as Escher were able to deceive the human visual system.
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Let me further illustrate the beauty of the human visual system. In 1658, Pascal [206]

described that humans can see mirror symmetry at a glance [306, 310]. A broad range of

fundamental research toward symmetry perception has been conducted; e.g., see Van der

Helm and Leeuwenberg [110]. However, until now, no algorithm has been presented that

completely describes the process of human symmetry recognition outside a controlled ex-

perimental setting; as Liu and Collins [162] stated: “choosing precisely which candidate is

preferred by human perception is an open problem”. As a consequence, the phenomenon

of human symmetry recognition in natural object images (e.g., that contain a face), is hard if

possible at all for computer vision.

In addition, humans can recognize objects that are occluded, without any problem.

It is a fundamental issue in perception research. Thus far, the stimulus domain has been

restricted to stylistic 2D line drawn stimuli [73, 150, 158]. Only in the last five years attempts

have been made to extend occlusion research to the domain of natural object images. The

ease with which humans recognize occluded objects is in sharp contrast with the problems

such tasks reveal for computer vision.

So, despite the rapid evolvement of computer vision techniques, human vision is still

superior in most aspects. Intrigued by the efficiency of human vision, on the one hand, we

aim at adopting principles of human vision for computer vision and for CBIR techniques.

On the other hand, image processing and CBIR techniques can and should be improved. So

both from a computer vision and human vision point of view, CBIR should be approached.

1.2 Content-Based Image Retrieval (CBIR)

In 1992, Kato [139] introduced the term content-based image retrieval (CBIR), to describe his

experiments on automatic retrieval of images from a database by color and shape features.

Since then, CBIR arose as a new field of research.

CBIR is the application of computer vision to the image retrieval problem; i.e., the

problem of searching for images in large image databases. Most image retrieval engines on

the world wide web (WWW) make use of text-based image retrieval, in which images are

retrieved based on their labels, descriptions, and surrounding text. Although text-based im-

age retrieval is fast and reliable, it fully depends on the textual annotations that accompany

images. Consequently, it requires every image in the database or on the WWW to be well

annotated or labeled.

As Smeulders, Worring, Santini, Gupta, and Jain [270] noted in 2000 “CBIR is at the end

of its early years” and is certainly not the answer to all problems. A quartet of arguments

can be identified, which sustain the latter claim: (i) CBIR techniques still yield unacceptable

retrieval results, (ii) they are restricted in the domain that is covered, (iii) they lack a suitable
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user-interface and (iv) are mainly technology-driven and, subsequently, require the use of

domain knowledge to fulfill their information need [235, 249].

In the last decade [6, 55, 122, 135, 184, 270, 308], a change in research perspective with

respect to CBIR systems can be seen: from computer vision and pattern recognition to other

disciplines such as cognitive science and psychology. Hence, the paramount importance to

consider the human in the loop is more and more emphasized. Using knowledge about

the user will provide insight in how the user-interface must be designed, how retrieval re-

sults may be presented, and it will categorize the typical information needs present with the

general public [115]. Hence, in the line of research as discussed in this thesis the human is

constantly in the loop of technological development.

1.3 Fields of application

Already a decade ago, Gudivada and Raghavan [100] identified twelve fields of application

in which CBIR can prove its usefulness: crime prevention, the military, intellectual property,

architectural and engineering design, fashion and interior design, journalism and advertis-

ing, medical diagnosis, geographical information and remote sensing systems, cultural her-

itage, education and training, home entertainment, and WWW searching. We will discuss

three of these fields of application: (i) the WWW, (ii) professional databases in which dedi-

cated CBIR techniques are applied, and (iii) photo books, as an application for customers.

1.3.1 The World Wide Web (WWW)

In 1945, Vannevar Bush described an application of electronics, which he named

MEMEX [45, 197]. Bush envisioned how the user would be able to jump from one piece of

information to another, facilitated by ingenious association and indexing techniques. This

should result in a total experience of opinions and decisions of ourselves, of our friends, and

of authorities. Within this, the concept of the WWW was already apparent. In 1966, Dou-

glas Engelbart introduced hyper-text. With that he gave birth to Bush’ dreams. Therefore,

Engelbart is considered to be the founder of the Internet and the later arisen WWW [313]. In

the early 1970s, as part of an Advanced Research Projects Agency (ARPA) research project

on “internetworking”, the Internet became truly operational.

The contrast is enormous between nowadays Internet and the text-based Internet as

it was at its launch. The hyper-text protocol, as founded by Engelbart, can hardly satisfy

the needs of Internet’s current users. This is due to more and more digital multi modal

information sources that are used; especially, images dominate the WWW with an average

between 14.38 [189] and 21.04 [137] images per page. In principle, CBIR can be used to
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retrieve these images from the WWW. However, CBIR on the (unrestricted) WWW suffers

from time, computational, and storage (or space) complexity. A substantial effort has to be

made before these are tackled.

1.3.2 Databases

Where the WWW is beyond the scope of current CBIR techniques, they can and are em-

ployed for databases. This is no different for the research presented in this thesis. Among

other domains, the NWO ToKeN projects conduct research on the domains of cultural her-

itage and medical applications.

1.3.2.A Databases of museums

The Dutch Rijksmuseum states: “Research is the basic premise of all museum activity, from

acquisition, conservation and restoration, to publication, education and presentation. In

general, this research involves the object or work of art in the museum as being a source

of information.” [221] However, how can these sources of information be efficiently ac-

cessed and enhanced? The Rijksmuseum has made their collection accessible through a

web-interface [222]. Their current interface provides the means to conduct ‘classical’ infor-

mation retrieval; i.e., text-based search. Other recent initiatives are, for example, described

in [67, 70, 98, 112, 236, 296].

In general, modern information retrieval techniques provide excellent results [113, 114]

when two premises are satisfied: (i) a well annotated database is available and (ii) good

choice of keywords is made, which both fits the query in mind and the keywords present in

the database. In a professional environment, using a limited database, such an approach can

be highly successful. In contrast, in most situations, no well annotated databases are present

in an unrestricted domain, which are queried by non-professionals, using non-optimal key-

words.

The general public does not know the style of a painter, the period he lived in, and

how his paintings are named. Not seldomly, a visitor does not even know his name exactly.

How to approximate a name, using keywords? It is possible, but by no means accessible to

the general public. Within such a scenario, the user will not be to able access the data.

A professional will utilize his knowledge and query using his knowledge about the

artist (e.g., name and country of residence), the object (e.g., title, material(s), technique(s)),

the dates, the acquisition method, and possibly will be able to use his associations. De-

tailed queries can be defined resulting in retrieval results with a high precision. However,

how to find objects that evoke the same atmosphere or trigger the same emotions? How

to find objects with a similar expression although created using other techniques on differ-
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ent materials? Systems that can answer such questions should be considered as being truly

intelligent. Regrettably, such systems are far out of science’s reach.

1.3.2.B Medical databases

Medical images have often been used for retrieval systems. Subsequently, the medical do-

main is often cited as one of the principal application domains for content-based access tech-

nologies. For example, in the radiology department of the University Hospital of Geneva

alone, the number of images produced per day in 2002 was 12,000, and it is still rising.”[185]

The rapid development in medical imaging is illustrated by the broad range of litera-

ture that has been published in the last decade [124, 149, 185, 256, 269, 278, 281, 301, 320].

Moreover, a still increasing number of medical image databases is available through web-

sites [54, 271]. More and more, CBIR techniques are used to access these databases efficiently.

For a broad range of image types, in various medical domains, CBIR techniques are

employed: dermatological images [241, 245], cytological specimens [179, 182], 3D cellular

structures [11], histopathologic images [130], histology images [290], stenosis images (within

cardiology) [198], MRIs (Magnetic Resonance Images) [103, 229], CT brain scans [160], ul-

trasound images [153], high resolution computed tomography (HRCT) scans of lungs [263],

thorax radiographies [1], Functional PET (Photon Emission Tomography) images [47], and

spine x-rays [5, 163]. Subsequently, a range of CBIR systems has been introduced, most

of them dedicated to a specific type of medical images, see Table 1.1. These CBIR systems

are already applied for professional databases. However, more general techniques should

be developed and CBIR systems should be used more frequently, also outside the medical

domain.

1.3.3 Photobook

More than a decade ago, one of the early CBIR systems was launched [209]: Photobook

(see also [210]). Its name illustrates its intended domain of application: photo-collections.

Nowadays, a still increasing, vast amount of people has a digital photo/video-camera. The

ease of making digital photo’s led to an explosion in digital image and video material. The

exchange of these materials is facilitated through both Internet and mobile telephones. In

addition, the costs for storing them have declined rapidly in the last years.

The exploded amount of digital image material is transported and stored on CDs,

DVDs, and hard disks. In contrast, only a decade ago everybody used paper photo books to

manage their photo-collection. The need emerged for digital photo books and, subsequently,

a range of them was developed and computers and their operating systems were adapted

to facilitate in handling (e.g., processing and browsing) multi-media information. However,
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Table 1.1: An overview of various image types and the sys-
tems that are used to retrieve these images; adopted
from [185].

Image types used Names of the systems
HRCTs of the lung ASSERT
Functional PET FICBDS
Spine X-rays CBIR2, MIRS
Pathologic images IDEM, I-Browse, PathFinder, PathMaster
CTs of the head MIMS
Mammographies APKS
Images from biology BioImage, BIRN
Dermatology MELDOQ, MEDS
Breast cancer biopsies BASS
Varied images I2C, IRMA, KMed, COBRA, MedGIFT,

ImageEngine

where in paper photo books people wrote small texts and placed dates accompanying pho-

tos, in their digital counterparts this effort is not made. Not in the last place, this will be due

to the vast amount of digital images compared to analog ones, made in the recent past. The

latter is due to the fact that (i) people tend to take an image without hesitating and (ii) there

are no developing and publishing costs. As a consequence, the amount of digital photo’s in

private photo collections is much larger than with their analog counterparts.

Since the digital image collections are not or poorly annotated, text-based image re-

trieval cannot be applied. Manual searching is a frequently used alternative but becomes

less attractive with the increasing size of the private, digital photo collections. In “How do

people organize their photographs?”, Rodden [231] describes a research with the aim “to

gain some insight into how computer-based systems to help people organize these images

might be designed.” In the years before and after Rodden’s suggestions, a few methods for

browsing through photo collections have been proposed. Already in 1994, Gorkani and Pi-

card [97] proposed to utilize “Texture Orientation for Sorting Photos at a Glance”. In 1997,

Ma and Manjunath [168] launched “NeTra: a toolbox for navigating large image databases”

(see also [169]). Shneiderman and Kang [262] proposed “Direct Annotation: A drag-and-

drop strategy for labeling photos”. Despite the effort made, no full-grown solution has been

introduced; so, the need for the development of adequate CBIR techniques was stressed.

The WWW and large professional databases (to a lower extent) suffer from a computa-

tional burden, due to the large amount of (high quality) image material. No such problems

are present with private image collections. Where private image collections can be too large

for manual searching, they are small compared to most professional databases. So, CBIR

systems can provide a substantial contribution in managing private photo collections.

8



1.4 The envisioned approach

1.4 The envisioned approach

CBIR is mostly approached by experts in the field of image processing. More recently, ex-

perts in cognitive science and artificial intelligence conducted research toward CBIR sys-

tems. The research described in this thesis envisioned a multi-disciplinary approach in

which methods and techniques from both worlds of science are united.

The research presented in this thesis started with fundamental research: categoriza-

tion of color stimuli by participants in an experimental setting. Statistics, as frequently used

in social sciences were used to analyze the results. The analysis of the experimental data

continued with a range of techniques as used in artificial intelligence and image process-

ing. A new texture analysis technique will be introduced utilizing human color processing

scheme and combining two image processing schemes. Next, human and artificial texture

classification were compared to each other.

In the last phase of this project, color and texture analysis were exploited for image

segmentation and shape extraction. All techniques were combined in one efficient human-

centered object-based image retrieval engine.

During several phases in the research, techniques and methods were evaluated within

a newly developed CBIR-benchmark. These evaluations were conducted by humans; hence,

the humans were almost continuously in the loop of the development of the CBIR tech-

niques.

1.5 Outline of the thesis

In the previous pages, we provided a broad overview of central concepts and introduced

the perspective from which this research was done. The research itself, followed by a gen-

eral discussion, is presented in the remaining part of this thesis. It comprises a range of

research methods; e.g., fundamental research, image processing techniques, evaluation of

techniques, methods, and algorithms. These methods are used in five lines of research: (i)

the 11 color categories demystified, (ii) benchmarking techniques, (iii) texture analysis, (iv)

image segmentation and shape extraction, and (v) techniques for Euclidean distance trans-

forms. Across these lines of research, the first line of research: the 11 color categories, as

used by humans in processing color, are the foundation of the image analyzes schemes de-

veloped. We will now provide a brief overview of the five lines of research and subsequently,

of the chapters in which they are presented, starting with the 11 color categories.
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1.5.1 Research line 1: 11 Color categories

Most research that will be presented in this thesis, is related to color. Therefore, we will start

with discussing this feature in Chapter 2. In the first part of this chapter, color histograms,

color quantization, and color spaces are discussed. In the second part of this chapter, an

overview of another view on color: 11 color categories is provided.

In Chapter 3, a questionnaire and two experiments that sustained the use of 11 color

categories in a computer environment are discussed. From the experimental data, Color

Look-Up Table (CLUT) markers came forth, which can be considered useful for model-

ing human color categorization. The complete table of CLUT markers is available as Ap-

pendix A. In Chapter 4, image processing techniques are introduced, which are applied on

the CLUT markers. The latter two chapters provide the ingredients for an efficient human-

centered color space segmentation, as described in Chapter 5.

1.5.2 Research line 2: Benchmarking Content-Based Image Retrieval

techniques

Since the aim of this project was to develop intelligent CBIR techniques, we choose to val-

idate the color space segmentation, as described in Chapter 5, in such a setting. For this

purpose, a CBIR benchmark was developed, as is described in Chapter 6. Moreover, the

benchmark provided the means to take the human in the loop of development.

In “The utilization of human color categorization for content-based image retrieval”

(Chapter 7), the CBIR benchmark is applied: seven different CBIR engines were tested, each

defined by a combination of a color quantization scheme (or color categorization) and a dis-

tance measure. In Chapter 8: “Utilizing color categories and color distributions”, we present

a second CBIR benchmark. A large group of users participated in this benchmark. A new

distance measure, based on the 11 color categories quantization scheme, was introduced,

providing additional color information.

1.5.3 Research line 3: Texture

In the third line of research, texture analysis methods are studied. Most texture description

methods are designed for the Intensity (gray value) domain of images. An overview of

Intensity-based texture descriptors is provided in Chapter 9.

With the rise of color photo’s and color television, in the second half of the 20th cen-

tury, the interest in colorful texture analysis grew. However, in practice most texture anal-

ysis methods were still developed for the Intensity dimension only. This was due to the

computational burden when analyzing image material in a 3D color space and due to the

10



1.5 Outline of the thesis

complexity of the phenomenon color. In the last decade, a few color-based texture analysis

methods were developed; Chapter 9 provides an evaluation of them.

In Chapter 10: “Parallel-sequential texture analysis”, the feasibility of image classifi-

cation by way of texture was explored. Hereby, a range of color quantization schemes and

color spaces were utilized. Moreover, the parallel-sequential texture analysis was launched,

which combines global color analysis with texture analysis, based on color.

As was indicated in Section 1.1, human vision can be taken as inspiration for

CBIR/computer vision techniques. In Chapter 11, a study is discussed in which an attempt

is made to measure up to human texture classification. In this research, we compare artificial

texture analysis and classification techniques with human texture classification.

1.5.4 Research line 4: Image segmentation and shape extraction

For image segmentation, frequently texture is utilized. Using local texture and color fea-

tures of image material, an image can be segmented. If needed, the shape of objects can be

approximated, using the segments found.

The development of a human-centered object-based image retrieval engine is dis-

cussed in Chapter 12. Coarse color image segmentation was applied, using the agglom-

erative merging algorithm. The CBIR benchmark, as introduced in Chapter 6, utilizing the

intersection distance measure, was used to evaluate the engines developed. Based on 15

features (i.e., the 11 color categories and 4 texture features), the center objects of images

were analyzed and images with comparable objects were retrieved. In “Human-centered

object-based image retrieval” (Chapter 13), the coarse image segmentation techniques of

Chapter 12 were adapted for shape extraction. Using pixelwise classification based on the

11 color categories, followed by smoothing operations, the shapes of objects were extracted.

Next, the Vind(X) shape matching algorithm was applied for shape matching. Four CBIR

engines were applied on the same data-set, exploiting: (i) color and texture of the object ver-

sus complete images, (ii) color and texture of the object, (iii) shape, and (iv) color, texture,

and shape combined.

1.5.5 Research line 5: Euclidean distance transforms

This research line concerns the field of computational geometry. Within this research line,

the Fast Exact Euclidean Distance (FEED) transform was launched. This line of research

ran in parallel with the other research lines. In Chapter 4, distance mapping is discussed in

general and FEED more specific, for binary as well as for multiple class data (such as the

11 color categories). In Chapter 5, FEED was applied in order to bridge the gap between
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(limited) experimental data concerning the 11 color categories and a quantization of color

space based on it (cf. Chapter 3 and 5), such that it can be applied for CBIR purposes.

The paper in which FEED was initially launched, can be found in Appendix C. A sub-

stantially faster parallel (timed) implementation (tFEED) was introduced a few months later,

see Schouten, Kuppens, and Van den Broek [253]. A dimension independent description of

the FEED algorithm is defined in Schouten, Kuppens, and Van den Broek [251], accompa-

nied with the launch of an implementation of FEED for 3D data: 3D-FEED.
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Abstract

In this chapter, general color concepts are introduced, which will be used in the remainder of

this thesis, for color analysis, colorful texture analysis, shape extraction, and CBIR. First, the

color histogram is described: a discrete function that quantizes the distribution of colors of an

image. Next, several color spaces and their color quantization schemes are discussed. In addi-

tion, an alternative view on color is presented: 11 color categories. A brief history is sketched

of a century of research on these color categories. Consecutively, the Sapir-Whorf hypothesis,

the work of Brown and Lenneberg, and the theory of Berlin and Kay, are discussed.



2.1 The color histogram

Color is the sensation caused by light as it interacts with our eyes and brain. The perception

of color is greatly influenced by nearby colors in the visual scene. The human eye contains

two types of visual receptors: rods and cones. The rods are responsive to faint light and

therefore, sensitive to small variations in luminance. The cones are more active in bright

light and are responsible for color vision. Cones in the human eye can be divided in three

categories, sensitive to long, middle, and short wavelength stimuli. Roughly these divisions

give use to the sensations of red, green, and blue.

The use of color in image processing is motivated by two principal factors. First, color

is a powerful descriptor that facilitates object identification and extraction from a scene.

Second, humans can discern thousands of color shades and intensities, compared to about

only two dozen shades of gray [95].

In this chapter, general color concepts, as used in this thesis, will be introduced. We

will start with a description of the color histogram. Next, color quantization will be ex-

plained, followed by the description of several color spaces and their quantization methods.

In addition, the research conducted in the last century toward an alternative view on color

is presented: 11 color categories. We end this chapter, with the introduction of the distance

measures that have been applied.

2.1 The color histogram

The color histogram is a method for describing the color content of an image, it counts the

number of occurrences of each color in an image [321]. The color histogram of an image is

rotation, translation, and scale-invariant; therefore, it is very suitable for color-based CBIR:

content-based image retrieval using solely global color features of images. However, the

main drawback of using the color histogram for CBIR is that it only uses color information,

texture and shape-properties are not taken into account. This may lead to unexpected errors;

for example, a CBIR engine using the color histogram as a feature is not able to distinguish

between a red cup, a red plate, a red flower, and a red car as is illustrated in Figure 2.1.

Many alternative methods have been proposed in the literature. They include color

moments [217, 285], color constants [85, 321], color signatures [142], color tuple histograms

[104], color coherent vectors [105], color correlograms [88], local color regions [142], and

blobs [51]. These methods are concerned with optimizing color matching techniques on a

spatial level; i.e., utilizing the spatial relations between pixels, in relation to their colors.

However, they disregard the basic issue of intuitive color coding. In other words, the way

the engine is processing color, is not related to human color processing. In our opinion,

prior to exploring these techniques, the issue of color coding (or categorization) should be

stressed; e.g., as can be done with the color histogram.
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2 Color representation

Figure 2.1: Two distinct images are shown. However, when represented by their color his-
tograms, they are judged as identical.

2.2 Color quantization

In order to produce color histograms, color quantization has to be applied. Color quantiza-

tion is the process of reducing the number of colors used to represent an image. A quanti-

zation scheme is determined by the color space and the segmentation (i.e., split up) of the

color space used. A color space (see Section 2.3) is the representation of color. Typically (but

not necessarily), color spaces have three dimensions and consequently, colors are denoted

as tuples of (typically three) numbers.

In applying a standard quantization scheme on a color space, each axis is divided into

a number of parts. When the axis are divided in k, l, and m parts, the number of colors

(n) used to represent an image will be n = k · l · m. A quantization of color space in n

colors is often referred to as a n-bins quantization scheme. Figure 2.2 illustrates the effect of

quantizing color images. The segmentation of each axis depends on the color space used. In

the next section, different color spaces and their quantization methods will be described.

(a) (b) (c)

Figure 2.2: (a) The original image using 2563 colors, (b) quantized in 8 bins, and (c) quantized
in 64 bins, using RGB color space. See Figure B.1 in Appendix B for large color
versions of these three photos.
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2.3 Color spaces

A color space specifies colors as tuples of (typically three) numbers, according to certain

specifications. Color spaces lend themselves to (in principle) reproducible representations

of color, particularly in digital representations, such as digital printing or digital electronic

display. The purpose of a color space is to facilitate the specification of colors in some stan-

dard, generally accepted way [95].

One can describe color spaces using the notion of perceptual uniformity [321]. Percep-

tually uniform means that two colors that are equally distant in the color space are percep-

tually equally distant. Perceptual uniformity is a very important notion when a color space

is quantized. When a color space is perceptually uniform, there is less chance that the dif-

ference in color value due to the quantization will be noticeable on a display or on a hard

copy.

In the remainder of this section, several color spaces with their quantization schemes

will be described. In addition, the conversion of color images to gray-scale images, using

the specific color space, will be described. The quantization of color images transformed

into gray-scale images, is independent of the color spaces: the gray-scale axis is divided in

the number of bins needed for the specific quantization scheme. In this thesis, gray-scale

images were quantized in 8, 16, 32, 64, and 128 bins.

2.3.1 The RGB color space

The RGB color space is the most used color space for computer graphics. Note that R, G,

and B stand here for intensities of the Red, Green, and Blue guns in a CRT, not for primaries

as meant in the CIE [59] RGB space. It is an additive color space: red, green, and blue light

are combined to create other colors. It is not perceptually uniform. The RGB color space can

be visualized as a cube, as illustrated in Figure 2.3.

Each color-axis (R, G, and B) is equally important. Therefore, each axis should be

quantized with the same precision. So, when the RGB color space is quantized, the number

of bins should always be a cube of an integer. In this thesis, 8 (23), 64 (43), 216 (63), 512 (83),

and 4096 (163) bins are used in quantizing the RGB color space. The conversion from a RGB

image to a gray value image simply takes the sum of the R, G, and B values and divides the

result by three.

2.3.2 The HSx color spaces

The HSI, HSV, HSB, and HLS color spaces (conventionally called ‘HSx’) are more closely re-

lated to human color perception than the RGB color space [159], but are still not perceptually
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uniform.

The axes from the HSx color spaces represent hue, saturation, and lightness (also called

value, brightness and intensity) color characteristics. The difference between the different

HSx color spaces is their transformation from the RGB color space. They are usually rep-

resented by different shapes (e.g., cone, cylinder). In Figure 2.3, the HSV color space is

visualized as a cone.

Hue is the color component of the HSx color spaces. Hue is an angle between a ref-

erence line and the color point in RGB space [53], the range of this value is between 0◦

and 360◦, for example blue is 240◦. According to the CIE (Commission Internationale de

lÉclairage) [59], hue is ”the attribute of a visual sensation according to which an area appears to be

similar to one of the perceived colors, red, yellow, green, and blue, or a combination of two of them”.

In other words, hue is the color type, such as red or green. Also according to CIE, saturation

is ”the colorfulness of an area judged in proportion to its brightness”. In the cone, the saturation

is the distance from the center of a circular cross-section of the cone, the ‘height’ where this

cross-section is taken is determined by the Value, which is the distance from the pointed end

of the cone. The value is the brightness or luminance of a color, this is defined by CIE as ”the

attribute of a visual sensation according to which an area appears to emit more or less light”. When

Saturation is set to 0, Hue is undefined. The Value-axis represents the gray-scale image.

The HSV color space can easily be quantized, the hue is the most significant character-

istic of color so this component gets the most fine quantization. In the hue circle, the primary

colors red, green, and blue, are separated by 120◦. The secondary colors, yellow, magenta,

and cyan, are also separated by 120◦ and are 60◦ away from the two nearest primary colors.

The most common quantization of the HSV color space is in 162 bins, where hue gets

18 bins and saturation and value both get 3 bins. When hue is divided in 18 bins, each

primary color and secondary color is represented with three subdivisions. In this thesis, the

HSV color space is quantized in 27 (3× 3× 3), 54 (6× 3× 3), 108 (12× 3× 3), 162 (18× 3× 3),

and 324 (36 × 3 × 3) bins.

2.3.3 The YUV and YIQ color spaces

The YUV and YIQ color spaces are developed for television broadcasting. The YIQ color

space is the same as the YUV color space, where the I-Q plane is a 33◦ rotation of the U-

V plane. The Y signal represents the luminance of a pixel and is the only channel used in

black and white television. The U and V for YUV and I and Q for YIQ are the chromatic

components.

The Y channel is defined by the weighted energy values of R(0.299), G(0.587), and

B(0.144) . The YUV and YIQ color spaces are not perceptually uniform. When the YUV
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cyan

green (G)red (R)

blue (B)

magenta

yellow

white

value (V)

saturation (S)

hue (H)

Figure 2.3: The RGB (red, green, and blue) and HSV/HSI (hue, saturation, and
value/intensity) color space.

and YIQ color spaces are quantized, each axis is quantized with the same precision. The

quantization schemes used for the YUV and YIQ color spaces in this theses are: 8 (23), 27

(33), 64 (43), 125 (53), and 216 (63) bins.

To optimize color appearance the YUV color space is often sampled. The samplings

we used to construct the color correlogram are: 4:4:4, 4:2:2, and 4:1:1, where the numbers

denote the relative amount of respectively Y on each row, U and V on each even-numbered

row, and U and V on each odd-numbered row in the image.

2.3.4 The CIE XYZ and LUV color spaces

The first color space developed by the CIE is the XYZ color space. The Y component is

the luminance component defined by the weighted sums of R(0.212671), G(0.715160), and

B(0.072169). The X and Z are the chromatic components. The XYZ color space is perceptually

not uniform. In quantizing the XYZ space, each axis is quantized with the same precision.

The CIE LUV color space is a projective transformation of the XYZ color space that is

perceptually uniform. The L-channel of the LUV color space is the luminance of the color.

The U and V channels are the chromatic components. So, when U, and V are set to 0, the

L-channel represents a gray-scale image.

In quantizing the LUV space, each axis is quantized with the same precision. For both

the XYZ color space and the LUV color space, the following quantization schemes are used:

8 (23), 27 (33), 64 (43), 125 (53), and 216 (63) bins.
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2.3.5 Toward another form of color representation

So far, we have discussed the color spaces used in our research and their quantization

schemes. All research in the field of CBIR and computer vision relies on the quantization of

color spaces. However, in this thesis we will introduce another approach toward color space

quantization (or segmentation); see also Chapter 5.

In the next section, we will provide a rapid guide through half a century of research

on human color categories, a concept that originates from anthropology and is discussed in

the field linguistics and psychology. In contrast, it was mainly ignored in the field of CBIR

and computer vision. In this thesis, a full color space segmentation is presented, which is

the foundation for all possible CBIR techniques, as utilized through this thesis.

2.4 Color categories: A century of research

In this part, we provide an overview of a century of research concerning human color cat-

egories. We start with the general Sapir-Whorf hypothesis in Section 2.4.1. Second, we

will discuss the work of Brown and Lenneberg, who studied the Sapir-Whorf hypothesis

with respect to human color coding (see Section 2.4.2). Last, in Section 2.4.3, we discuss the

thorough research of Berlin and Kay, as reported in 1969. Each section concludes with the

discussion of recent research, including pros and cons.

2.4.1 The Sapir-Whorf hypothesis

Sapir was inspired by the work of Wilhelm von Humboldt [120], who stated: “Man lives in

the world about him principally, indeed exclusively, as language presents it to him.” Accord-

ing to Humboldt languages differ from one another; thought and language are inseparable;

and, therefore, each speech community embodies a distinct world-view.

In 1929, Edward Sapir stated in his “The Status of Linguistics as a Science” [240]: “Hu-

man beings do not live in the objective world alone, nor alone in the world of social activity

as ordinarily understood, but are very much at the mercy of the particular language which

has become the medium of expression in their society.” Further, he stated: “The fact of the

matter is that the ‘real world’ is to a large extent unconsciously built up on the language

habits of the group.”

In addition, Benjamin Lee Whorf (1940/1956) stated in his “Science and Linguistics”

[316, 317]: “We cut nature up, organize it into concepts, and ascribe significances as we do,

largely because we are parties to an agreement to organize it in this way - an agreement that

holds throughout our speech community and is codified in the patterns of our language.
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The agreement is, of course, an implicit and unstated one, but its terms are absolutely oblig-

atory.”

One can distinguish two theories, concerning linguistic determinism, in their writings:

(i) the language we speak determines the way we interpret the world around us [240] and

(ii) a weaker theory, which states that language influences our representation of the world

[316, 317].

However, neither Sapir nor Whorf formally described their theory nor supported it

with empirical evidence. Nevertheless, in the 1930s and 1940s, the Sapir-Whorf hypothesis

has caused controversy and spawned research in a variety of disciplines (e.g., linguistics,

psychology, philosophy, and anthropology).

By dovetailing the Sapir-Whorf hypothesis, Lucy [166, 167] and Slobin [268] have

demonstrated that language can directly influence our thoughts. Through verbal limitation,

grammatical focus, and structural emphasis, oral communication can pattern our very way

of thinking. Cultural anthropologist Andy Clark concludes that language not only “confers

on us added powers of communication; it also enables us to reshape a variety of difficult

but important tasks into formats suited to the basic computational capacities of the human

brain” [57]. Hence, cultures with different structural axioms result in different computa-

tional capacities.

However, through the years, more studies appeared that dispute the Sapir-Whorf hy-

pothesis. For example, Osgood [204] found that “human beings the world over, no matter

what their language or culture, do share a common meaning system, do organize experience

along similar symbolic dimensions.” Similar conclusions were drawn by Schlesinger [244].

In the current section, the influence of language on cognition and, more specific, per-

ception was discussed. This was done on a rather abstract level. In the next section, the rela-

tion between language and the perception of colors will be discussed. With the description

of this relation, an important concept is introduced that can be considered as the foundation

for the present thesis.

2.4.2 Human color coding

In 1954, Roger W. Brown and Eric H. Lenneberg [43] reported their influential “a study in

language and cognition”. They stated “that more nameable categories are nearer the top of

the cognitive ‘deck’ [43]”.

Brown and Lenneberg [43] introduced their experiment with: “Sensory psychologists

have described the world of color with a solid using three psychological dimensions: hue,

brightness, and saturation. The color solid is divisible into millions of just noticeable differ-

ences; Science of Color [202] estimates 7,500,000. The largest collection [82, 173] of English
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color names runs less than 4,000 entries, and of these only 8 occur very commonly [295] (i.e.,

red, orange, yellow, green, purple, pink, and brown)1. Evidently there is considerable categoriza-

tion of colors. It seems likely to us that all human beings with normal vision will be able

to make approximately the same set of discriminations. This ability appears to depend on

the visual system, which is standard equipment for the species. Whatever individual differ-

ences do exist are probably not related to culture, linguistic or extra linguistic. It does not

follow that people everywhere either see or think of the world in the same way. Cultural

differences probably operate on the level of categorization rather than controlled laboratory

discrimination.”

They found that English color naming and color recognition are related [43]. Brown

and Lenneberg [43] “guess it is that in the history of a culture the peculiar features of the

language and thought of people probably develop together.” They continue (and conclude)

with: “In the history of an individual born into a linguistic community the story is quite

different. The patterned responses are all about him. They exist before he has the cogni-

tive structure that will enable him to pattern his behavior in the approved fashion. Simple

exposure to speech will not shape anyone’s mind. To the degree that the unacculturated

individual is motivated to learn the language of a community, to the degree that he uses its

structure as a guide to reality, language can assume a formative role. [43]”

Brown and Lenneberg’s statements can be explained in favor of both the linguistic

relativism [244] and the cognitive universalism [208]. Research of Lucy and Shweder [165]

and Kay and Kempton [141] provided support for the linguistic relativity hypothesis with

respect to color memory. In contrast, based on his cross-cultural color sorting test, Davies

concluded strong cognitive universalism [71].

2.4.3 Berlin and Kay’s Basic color terms

We will now discuss the research of Brent Berlin and Paul Kay’s book as described in “Basic

color terms: Their universality and evolution” [16]. Their research indicates that “seman-

tic universals do exist in the domain of color vocabulary. Moreover, these universals ap-

pear to be related to the historical development of all languages in a way that can properly

be termed evolutionary. [16]” This statement was based on the data gathered from native-

speaking informants of twenty languages, from unrelated language families [16].

It appeared that “although different languages encode in their vocabularies different

numbers of color categories, a total universal inventory of exactly eleven basic color cate-

gories exist from which the eleven or fewer basic color terms of an given language are al-

ways drawn.” Berlin and Kay also found that “the distributional restrictions of color terms

across languages are:

1italics are added by the author
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1. All languages contain terms for white and black.

2. If a language contains three terms, then it contains a term for red.

3. If a language contains four terms, then it contains a term for either green or yellow

(but not both).

4. If a language contains five terms, then it contains terms for both green and yellow.

5. If a language contains six terms, then it contains a term for blue

6. If a language contains seven terms, then it contains a term for brown

7. If a language contains eight or more terms, then it contains a term for purple, pink,

orange, gray, or some combination of these.”

“Further evidence for the cross-language universality of color foci is that the location

of color foci varies no more between speakers of different languages than between speakers

of the same language. [16]” Let us further adopt from Berlin and Kay [16] that “whenever we

speak of color categories, we refer to the foci of categories, rather than to their boundaries

or total area, except when stating otherwise.”

Independent of the cause of the universal color categories, most researchers confirm

their existence. However, recently Roberson et al. [226, 227, 228] provided evidence that

supports that color categories are not universal. Others such as Benson [10] simply stated:

“Color categories make the world easier to live in. Granny Smith (green) and Red Delicious

(red) apples belong in different categories (bins).” The majority of research reported follows

Benson (e.g., [75, 219]). Let us, therefore, adopt the opinion that color categories are, at least

almost, universal. This, due to either linguistic relativism, through cognitive universalism,

or through a combination of both hypotheses.

2.4.4 Quantization of the 11 color categories

The 11 color categories can be quantized into more color categories by dividing the Hue,

Saturation, and Intensity values after the 11 color segmentation is complete. For example,

a 70 bins quantization can be accomplished by dividing Hue, Saturation, and Intensities

in 2 parts. If all 11 categories were colorful categories, the number of bins would be 88

(2 × 2 × 2 × 11). However, three of the color categories are gray-scales (i.e., black, white,

and gray) and subsequently, Saturation is 0 and Hue is undefined for these categories (see

Section 2.3.2). Therefore, for these three categories, dividing each axes in 2 bins (or segments)

does not result in 24 (3 × 8) colors but in 6 (3 × 2) colors (gray-scales). The number of

categories is thus determined as follows: 88 − 24 + 6 = 70. In the remainder of this thesis,

the 11 color categories were quantized in 11, 27 (11× (3× 1× 1)− 6), 36 (11× (4× 1× 1)− 8),

70 (11 × (2 × 2 × 2) − 24 + 6), and 225 (11 × (3 × 3 × 3) − 81 + 9) bins.
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2.5 Discussion

In this chapter, the basic color terms used in this thesis are explained. Moreover, an alterna-

tive view on color analysis has been introduced: 11 color categories. In the next chapter, two

experiments are discussed in which the 216 W3C web-safe colors were assigned to the 11

color categories. The resulting data are the foundation of a new, human-based color space

segmentation, as will be introduced in Chapter 5.

The quantizations as discussed in this chapter, will be utilized for texture analysis pur-

poses, as will be shown in the second half of this thesis, starting with Chapter 9. In addition,

the 11 color categories are utilized for segmentation of image material (see Chapter 12) and

for shape matching purposes (see Chapter 13).
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3
Modeling human color categorization:
Color discrimination and color memory



Abstract

In Content-Based Image Retrieval, selection based on color is done using a color space and

measuring distances between colors. Such an approach yields non-intuitive results for the

user. We introduce color categories (or focal colors), determine that they are valid, and use

them in two experiments. The experiments conducted, reveal a difference between color cate-

gorization of the cognitive processes color discrimination and color memory. In addition, they

yield a Color Look-Up Table, which can improve color matching, that can be seen as a model

for human color matching.

This chapter is an adapted version of:

Broek, E. L. van den, Hendriks, M. A., Puts, M. J. H., and Vuurpijl, L. G. (2003). Modeling

human color categorization: Color discrimination and color memory. In T. Heskes, P. Lucas, L.

G. Vuurpijl, and W. Wiegerinck (Eds.), Proceedings of the Fifteenth Belgium-Netherlands Artificial

Intelligence Conference (BNAIC2003), p. 59-66. October 23-24, The Netherlands - Nijmegen.
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3.1 Introduction

The origin of the color lilac lays in the Sanskrit nilla ‘dark blue’, of which the Persian made

nIlak ‘bluish’, from nIl ‘blue’. In the Arabic the meaning evolved to a description of a plant

with flowers of this color: the Sering. In 1560 the Sering was brought to Vienna, by an Aus-

trian ambassador. From there the plant reached France. There the word’s meaning evolved

to “a variable color averaging a moderate purple” [181, 288].

So, there is more with colors than one would think at a first glance. The influence

of color in our everyday life and the ease with which humans use color are in strong con-

trast with the complexity of the phenomenon color (topic of research in numerous fields of

science; e.g., physics, biology, psychology, computer vision).

In this chapter, we focus on the use of colors in the field of Content-Based Image Retrieval

(CBIR) [235, 270]. On the one hand, one has to take into account the RGB-color space used

by the computer, the environmental conditions, etc. On the other hand, human color per-

ception is of utmost importance. Since (human) users judge the retrieval results, the CBIR’s

matching algorithms need to provide a match that the user can accept. The complexity of

this constraint is illustrated by the amount of available color spaces, such as: RGB, HSV,

CIE [59] XYZ, and Munsell [230] [79]. However, none of these color spaces models human

color perception adequately.

In our opinion, one should consider color in CBIR from another perspective; i.e., that of

the focal colors or color categories (i.e., black, white, red, green, yellow, blue, brown, purple,

pink, orange, and gray; see also Chapter 2). People use these categories when thinking,

speaking, and remembering colors. Research from diverse fields of science emphasize the

importance of them in human color perception. The use of this knowledge can possibly

provide a solution for the problems of color matching in CBIR.

Most CBIR-engines distinguish two forms of querying, in which the user uses either an

example image (query-by-example) or defines features by heart, such as: shape, color, texture,

and spatial characteristics (query-by-content). In the latter case, we are especially interested

in query-by-color. At the foundation of each of these queries lies a cognitive process, re-

spectively color discrimination and color memory. Let us illustrate the importance of the

distinction between query-by-example and query-by-color by a simple example. Imagine you

want to find images of brown horses. In the case of query-by-example, the resulting images

will be matched on the example image: a process of color discrimination is triggered. In this

process, the colors are (directly) compared to each other. In the case of query-by-color, we

need to try to imagine the color brown. Probably, you will not have a clear color in mind,

but a fuzzy idea or a fuzzy set of colors: a color category, based on your color memory. All

individual elements of this brown set (or category) are acceptable colors. There is no need

for several types of brown. Providing the keyword ‘brown’ or pressing a button resembling
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the fuzzy set brown is sufficient.

In both forms of querying the CBIR-system can use a Color Look-Up Table (CLUT) for

the determination of the elements of this set, described by R, G, and B-values. The set is

fuzzy due to the several influences on the color (of the object of interest), such as the color

of the surrounding and the semantic context in which the object is present.

However, it is clear that a distinction should be made between color categorization

by discrimination and color categorization by memory. An important distinction because

humans are capable of discriminating millions of colors but when asked to categorize them

by memory, they use a small set colors: focal colors or color categories [16, 42, 93, 232]. Despite

the fact that the importance of such a distinction is evident, this differentiation is not made

in CBIR-systems.

In the remainder of this chapter, a question is posed and two experiments will be ex-

ecuted. The question posed to the subjects is: “Please write down the first 10 colors that

come to mind.” With the experiments we show the difference between color categorization

by color discrimination and by color memory. Hence, this research will show that:

• The use of color categories is valid in a CBIR context,

• The RGB-color space can be assigned to color categories,

• There is a difference in color categorization using color discrimination or color mem-

ory.

Moreover, we will present markers, by which the color space is divided, on which a

CLUT for CBIR can be employed. With that a new model of human color categorization is

introduced.

3.2 Method

3.2.1 Subjects

Twenty-six subjects with normal or corrected-to-normal vision and no color deficiencies,

participated. They participated either voluntary or within the scope of a course. The first

group were employees and the latter were students of the Radboud University Nijmegen.

They were naive as to the exact purpose of the experiment.

3.2.2 Equipment

An attempt was made to create an average office environment. Stimuli were presented on a

17” CRT monitor (ELO Touchsystems Inc., model: ET1725C), with a resolution of 1024 x 768
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(a) (b)

Figure 3.1: Screendumps of the user interfaces of (a) the color memory experiment, with
gray, labeled buttons, and of (b) the color discrimination experiment with un-
labeled, colored buttons. So, the color classification had to be employed based
on respectively color memory color discrimination. See Figures B.2 and B.3 in
Appendix B for large color versions of these screendumps.

pixels at a refresh-rate of 75Hz. The experiment was conducted in an room with average of-

fice lighting: a Cool White Fluorescent light source: TL84 was present, its color temperature:

4100K (Narrow Band Fluorescent), as used primarily in European and Asian office lighting.

The experiments ran on a PC with an Intel Pentium II 450 MHz processor, 128mb RAM,

a Matrox Millennium G200 AGP card, and with a Logitech 3-button Mouseman (model: M-

S43) as pointing-device. The experiments were conducted in a browser-environment with

Internet Explorer 6.0 as browser and Windows 98SE as operating system, using 16-bit colors,

where respectively 5, 6, and 5 bits are assigned to the red, green, and blue channel.

3.2.3 Stimuli

The stimuli were the full set of the 216 web-safe colors1. These are defined as follows: The

R, G, and B dimensions (coordinates) are treated equally. Their minimum value is 0, the

maximum value of each of the dimensions is 255. For each dimension 6 values are chosen

on equal distance, starting with 0. So, for the RGB-values 0 (0%), 51 (20%), 102 (40%), 153

(60%), 204 (80%), and 255 (100%) are chosen. Each of these 6 values is combined with each

of the 6 values of the 2 other dimensions. This results in 63(= 216) triple of coordinates

in the RGB-space. These RGB-values result for both Internet Explorer and Netscape under

both the Windows and the Mac operating system, in the same (non-dithered) colors iff the

operating system uses at least 8-bit (256) colors.

1http://www.vu.msu.edu/pearls/color/1.htm
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The stimulus (width 9.5 cm and height 6.0 cm) was presented in the center of the screen,

on a gray background. Below the stimulus 11 buttons were placed (width: 1.8 cm and

height 1.2 cm; width between: 0.6 cm) (see Figures 3.1a and 3.1b). In the color memory

experiment the buttons were labeled with the names of the 11 focal colors (see Figure 3.1a);

in the color discrimination experiment each of the buttons did have one of the 11 focal colors

(see Figure 3.1b). The 11 focal colors were presented conform the sRGB standard of the World

Wide Web consortium (W3C) [284]. The button of choice was selected with one mouse click

upon it.

3.2.4 Design

Half of the participants started with the color discrimination experiment, the other half

started with the color memory experiment. Each experiment consisted of four blocks of

repetitions of all stimuli (in a different order), preceded by a practice session. Each block

consisted of the same 216 stimuli, randomized for each block and for each participant. In

addition, the 11 buttons were also randomized for each block and for each participant. The

practice session consisted of 10 stimuli. Block, stimulus, and button order was the same for

both experiments. Between the stimuli a blank screen was provided for one second, with a

gray color. Table 3.1 provides a schematic overview of this design.

The participants were asked to take a short break between the blocks of repetition,

within each experiment and to take a somewhat longer break between both experiments.

The duration of the breaks was determined by the subjects. In total, a complete session took

on the average 70 minutes, including breaks.

3.2.5 Procedure

The global scope of the experiment was explained. After that a small questionnaire was

completed. The first task was to write down the 10 colors that arise from memory first.

Next, the design of the experiments was explained. The subjects were instructed for the color

memory experiment to categorize the stimulus into one of the color categories, represented

by their names. In the color discrimination experiment, the subjects were asked to choose

Table 3.1: The design of the experimental session: a practice session followed by the color
memory and the color discrimination experiment, each consisting of four blocks,
with as stimuli the randomized 216 W3C web-safe colors. The participants were
able to take a break, as denoted by ‘b’ and ‘ b ’, for respectively a short and longer
break.

practice b experiment 1 b experiment 2
1 b 2 b 3 b 4 1 b 2 b 3 b 4
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one of the 11 focal-colors that best resembled the stimulus. Last, it was emphasized that

there were no wrong answers and that if questions would arise they could be asked during

one of the breaks.

3.3 Results

3.3.1 Mentioning of color names

For the determination of the confidence intervals we have used the modified Wald

method [2] that proved to work well with a limited number of measurements and with pro-

portions close to 0 or 1.0; both the case in the present research. The proportion or frequency

of appearance was determined by:

p =
S + 2

N + 4

where p is the proportion, S is the number of times the color is mentioned, and N is the num-

ber of subjects (26 in the present research). Where 2 and 4 are experimentally determined

constants, as described by Agressti and Coull [2].

The confidence interval was determined by:

p − φ

√

p (1 − p)

N + 4
to p + φ

√

p (1 − p)

N + 4

where φ is 2.58 or 1.96 (in literature frequently rounded to 2.5 and 2 respectively) for the

critical values from the Gaussian distribution for respectively 99% and 95%. The (relative)

frequencies as well as the confidence intervals (both 99% and 95%) for all colors mentioned,

are given in Table 3.2.

There were some observations of the experimenter of possible factors of influence on

the data provided by the question of mentioning 10 colors:

• Most subjects were directly able to write down 7, 8, or 9 color names, but experienced

it as difficult to mention the last.

• A considerable number of participants asked whether black, gray, and white were

colors during their task of writing down 10 color names. This was confirmed by the

researcher who conducted the experiment.

• Another group of subjects indicated after they had written down the color names that

their opinion was that black, gray, and white are no colors. With that as opinion they

had chosen to not write down black, gray, and white. This explains for a large part the

less frequently mentioned colors, most written down last.
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3 Modeling human color categorization: Color discrimination and color memory

Table 3.2: Frequency and confidence-intervals of color names mentioned.
Color name Frequency (in %) min.-max. p at 99% (in %) min.-max. p at 95% (in %)
red 26 (100.0%) 81.6% - 100.0% 84.4% - 100.0%
green 26 (100.0%) 81.6% - 100.0% 84.4% - 100.0%
yellow 26 (100.0%) 81.6% - 100.0% 84.4% - 100.0%
blue 26 (100.0%) 81.6% - 100.0% 84.4% - 100.0%
purple 24 ( 92.3%) 70.6% - 100.0% 74.5% - 98.8%
orange 22 ( 84.6%) 61.2% - 98.8% 65.7% - 94.3%
black 20 ( 76.9%) 52.5% - 94.1% 57.5% - 89.2%
white 20 ( 76.9%) 52.5% - 94.1% 57.5% - 89.2%
brown 20 ( 76.9%) 52.5% - 94.1% 57.5% - 89.2%
gray 15 ( 57.7%) 33.4% - 80.0% 38.9% - 74.4%
pink 11 ( 42.3%) 20.0% - 66.6% 25.6% - 61.1%
violet 06 ( 23.1%) 5.9% - 47.5% 10.8% - 42.5%
beige 04 ( 15.4%) 1.2% - 38.8% 5.7% - 34.3%
ocher 03 ( 11.5%) 0.9% - 34.2% 3.3% - 30.0%
turquoise 02 ( 7.7%) 2.7% - 29.3% 1.1% - 25.5%
magenta 02 ( 7.7%) 2.7% - 29.3% 1.1% - 25.5%
indigo 02 ( 7.7%) 2.7% - 29.3% 1.1% - 25.5%
cyan 02 ( 7.7%) 2.7% - 29.3% 1.1% - 25.5%
silver 01 ( 3.8%) 4.1% - 24.1% 0.7% - 20.7%
gold 01 ( 3.8%) 4.1% - 24.1% 0.7% - 20.7%
bordeaux-red 01 ( 3.8%) 4.1% - 24.1% 0.7% - 20.7%

As presented in Table 3.2, every subject named red, green, blue, and yellow. With 11

occurrences, pink was the least mentioned focal color. Nevertheless, pink was mentioned

almost twice as much as the most frequently mentioned non-focal color: violet (6). The other

non-focal colors were mentioned even less. In addition, the three observations mentioned

above only confirm the existence of the focal colors in human memory.

3.3.2 The color discrimination and color memory experiment separate

The main result of both experiments is a table of markers for a CLUT. The full table of

CLUT markers can be found in Appendix A. The table distinguishes the discrimination and

memory experiment.

We have analyzed the color discrimination experiment on each of the three dimen-

sions: R, G, and B. In each experiment, four blocks were present with the same randomized

stimuli (see Section 3.2.4). The categorization of the same stimuli differed between the blocks

(p < .001). This held for all 11 color categories. The same was done for the color memory

experiment. Again block appeared a strong factor of influence (p < .001). Again this held

for all 11 color categories.
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Table 3.3: Differences between the color memory and
the color discrimination experiment, per
RGB color axis, per color category.

Color axis color category Strength and significance
R blue F (1, 25) = 3.48, p < .075

brown F (1, 25) = 3.74, p < .065
purple F (1, 25) = 6.49, p < .017
red F (1, 25) = 20.50, p < .001

G black F (1, 25) = 35.27, p < .001
blue F (1, 25) = 35.46, p < .001
brown F (1, 25) = 33.52, p < .001
green F (1, 25) = 21.79, p < .001
orange F (1, 25) = 30.12, p < .001
purple F (1, 25) = 15.91, p < .001
red F (1, 25) = 12.58, p < .002
white F (1, 25) = 22.26, p < .001

B black F (1, 25) = 12.89, p < .001
blue F (1, 25) = 7.67, p < .010
brown F (1, 25) = 8.67, p < .007
orange F (1, 25) = 4.02, p < .056
pink F (1, 25) = 9.82, p < .004
white F (1, 25) = 7.19, p < .013
yellow F (1, 25) = 7, 67, p < .010

3.3.3 The color discrimination and the color memory experiment together

The analysis of the experiments, conducted separately on each of the three dimensions: R, G,

and B, showed a strong difference between the experiments on each of the three dimensions

(R : F (11, 15) = 2.96, p < .027; G : F (11, 15) = 7.843, p < .001; B : F (11, 15) = 3.11, p < .022).

The results of a more detailed analysis for each color category separate on the R, G, and B

dimensions of the RGB color space are provided in Table 3.3. The color categories that are

not mentioned for each of the dimensions are not influenced by the difference in buttons

between both experiments.

However, it is much more interesting to consider the colors independent of their (R,

G, and B) dimensions. In both experiments (the overlap), 62 of the same web-safe colors

were categorized as blue, 69 were categorized as green, and 49 were categorized as purple.

Especially, for the color category purple, a clear difference between both experiments was

present. The remaining colors were categorized to one of the other 9 color categories. The

overlap between both experiments for these categories was much smaller (average: 12.89;

range: 4-20). The differences were large (average: 6.78; range: 1-19).
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3.4 Discussion

The questionnaire showed that the 11 color categories exist. This validated not only the

choice of the 11 buttons used for the categorization of stimuli in the experiment, but, more

importantly, it validated the idea to describe color space, using these color categories. When

people use color categories when thinking, speaking, and remembering colors (see Chap-

ter 2), why not use them for describing the color space and use this description for CBIR?

Since the existence of color categories turned out to be valid we used them for two experi-

ments on color categorization: specified for triggering processes related to respectively color

discrimination and color memory.

Conform the hypothesis, no consistent color categorization was found over the exper-

iments. This, despite the fact that the same stimuli were presented in the same blocks with

the same button order, for each of the experiments; see the CLUT in Appendix A. So, this

leaves as conclusion that the cognitive processes of discrimination and memory influence

color categorization strongly.

The CLUT-markers were derived from the experimental results. They enable color

matching using a human-based color space segmentation. Such an approach could enhance

the color matching process significantly. Results based on such a color space description

would be more intuitive for users. This would yield for the user more satisfying results than

when using non-intuitive color matching functions founded on an arbitrary quantization of

color space.

Furthermore, the strong effect of the stimulus order on their perception was remark-

able, as indicated by the very strong influence of the factor block on the color categorization.

This again indicates the strong influence of color memory on color perception. However,

this did not explain that the CLUT markers define fuzzy boundaries between the color cat-

egories. This is due to a wide range of variables influencing color perception: memory,

illumination, object identity, culture, emotion, and language, see Chapter 2.

So, points in RGB color space were assigned to human color categorizes, founded on

two different cognitive processes: color discrimination and color memory. These catego-

rized points can be considered as markers for an on human perception based division of

color space. Hence, these markers provide the means for a color space segmentation and,

subsequently, quantization that is based on human cognition.

In the next chapter, the concept of Weighted Distance Mapping (WDM) is introduced.

This technique was used to segment the complete color space, based on the CLUT mark-

ers. In Chapter 5, the WDM is explained, which was applied on the CLUT markers, as

presented in the present chapter. The latter resulted in the first complete description of color

space based on human color categories. Moreover, this description can be utilized for CBIR

matching purposes as will be shown later in this thesis.
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Abstract

A new method is introduced for describing, visualizing, and inspecting data spaces. It is based

on an adapted version of the Fast Exact Euclidean Distance (FEED) transform. It computes a

description of the complete data space based on partial data. Combined with a metric, a true

Weighted Distance Map (WDM) can be computed, which can define a confidence space. Sub-

sequently, distances between data points can be determined. Using edge detection, borders

(or boundaries) between categories (or clusters) of data can be found. Hence, Voronoi dia-

grams can be created. Moreover, the two-dimensional visualization of such WDMs provides

excellent means for data inspection. Several examples illustrate the use of WDMs as well as

their efficiency. So, a new, fast, and exact data analysis method has been developed that yields

the means for a rich and intuitive method of data inspection.

This chapter is almost identical to:

Broek, E. L. van den, Schouten, Th. E., Kisters, P. M. F., and Kuppens H. (2005). Weighted Dis-

tance Mapping (WDM). In N. Canagarajah, A. Chalmers, F. Deravi, S. Gibson, P. Hobson, M.

Mirmehdi, and S. Marshall (Eds.), Proceedings of The IEE International Conference on Visual Infor-

mation Engineering (VIE2005), p. 157-164. April 4-6, Glasgow - United Kingdom. Wrightsons -

Earls Barton, Northants, Great Britain.



4.1 Introduction

4.1 Introduction

With the increasing amounts of information in the current society, the need for data visu-

alization and interpolations in data spaces becomes more and more important. In the last

decades, both automated and manual procedures have been developed for these purposes.

These procedures not seldomly rely on clustering techniques (introduced by [298]), used

in a wide range of disciplines. The clusters obtained provide a way to describe the struc-

ture present in data, based on a certain feature representation. However, they rely on the

availability of data that appropriate cover the corresponding data space.

In practice, often only partial data is available. Nevertheless, a description of the com-

plete data space can be required. In such a case, approximations have to be made concerning

those parts of the data space that lack data. This chapter presents a promising new approach:

Weighted Distance Mapping (WDM), which provides the means to describe and inspect Z
2

complete data spaces, based on any arbitrary number of data points.

As will be shown in this chapter, WDMs can be utilized for four purposes: (1) de-

scribe the complete data space based on a limited number of data points that fill only a

small part of the complete data space, (2) rapid visualization of data spaces, (3) determine

distances between data, using any metric, and (4) extraction of edges (or boundaries) be-

tween categories. These four features can be useful in a wide range of applications; e.g.,

robot navigation [143, 253] and segmentation of a data space based on valuable but limited

experimental data (e.g., color assigned to color categories), as described in Section 4.7 and

used by [30, 225].

Before WDM is introduced, morphological processing and the (Euclidean) distance

transform are briefly described. In addition, the Voronoi diagram is briefly discussed, as a

primitive distance map. Next, an adapted version of the algorithm that provides Fast Exact

Euclidean Distance (FEED) transformations [254] is applied to obtain the WDMs.

In Section 4.5, FEED is compared with the city-block distance, as a baseline, and with

Shih and Wu’s [259] 2-scan method, as a state-of-the-art fast Euclidean distance (ED) trans-

form. Next, FEED is applied on the confidence-based categorization of a color space, based

on experimental data. This chapter ends with conclusions and a brief exposition of advan-

tages and disadvantages of WDMs generated by FEED.

4.2 From morphological processing to distance transform

The operations dilation (also named dilatation) and erosion, illustrated in Figures 4.1

and 4.2, are fundamental to morphological processing of images. Many of the existing mor-

phological algorithms are based on these two primitive operations [95].
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4 Multi class distance mapping

Figure 4.1: The process of dilation illustrated. The left figure is the original shape A. The
square in the middle is the dilation marker B (dot is the center). The middle of
the marker runs over the boundary of A. The result of dilation of A by B (A⊕B)
is given by the solid shape on the right, in which the inner square projects the
original object A.

Given two sets A and B in Z
2, the dilation of A by B, is defined as:

A ⊕ B = {x | (B)x ∩ A 6= ∅}, (4.1)

where (B)x denotes the translation of B by x = (x1, x2) defined as:

(B)x = {c | c = b + x, for some b ∈ B} (4.2)

Thus, A ⊕ B expands A if the origin is contained in B, as is usually the case.

The erosion of A by B, denoted A 	 B, is the set of all x such that B translated by x, is

completely contained in A, defined as

A 	 B = {x | (B)x ⊆ A} (4.3)

Thus, A 	 B decreases A.

Based on these two morphological operations the 4-n and the 8-n dilation algorithms

were developed by Rosenfeld and Pfaltz [233] for region growing purposes. These region

growing algorithms are based on two distance measures: the city-block distance and the

chessboard distance. The set of pixels contained in the dilated shape, for respectively 4-n

and 8-n growth for an isolated pixel at the origin, are defined as:

C4(n) = { (x, y) ∈ Z
2 : |x| + |y| ≤ n }, (4.4)

C8(n) = { (x, y) ∈ Z
2 : |x| ≤ n, |y| ≤ n }, (4.5)

where n is the number of iterations.
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Figure 4.2: The process of erosion illustrated. The left figure is the original shape A. The
square in the middle is the erosion marker B (dot is the center). The middle of
the marker runs over the boundary of A. The result of erosion of A by B (A	B) is
given by the solid shape on the right, in which the outer (dotted) square projects
the original object A.

To obtain a better approximation for the ED, Rosenfeld and Pfaltz [233] recommended

the alternate use of the city-block and chessboard motions, which defines the octagonal dis-

tance. The octagonal distance provides a better approximation of the ED than the other two

distances.

Thirty years later Coiras et al. [58] introduced hexadecagonal region growing, again

a combination of 4-n and 8-n growth (see Figure 4.3). The latter uses the identification of

vertex pixels for vertex growth inhibition. This resulted in an approximation of ideal circular

region growing up to 97.3% and, hence, outperformed six other growth models.

4.3 Euclidean Distance transformation (EDT)

Region growing algorithms can be applied to obtain distance transformations. A distance

transformation [233] creates an image in which the value of each pixel is its distance to the

set of object pixels O in the original image:

D(p) = min{dist(p, q), q ∈ O} (4.6)

The Euclidean distance transform (EDT) has been extensively used in computer vi-

sion and pattern recognition, either by itself or as an important intermediate or ancillary

method in applications ranging from trajectory planning [324] to neuromorphometry [62].

Examples of methods possibly involving the EDT are: (i) skeletonization [144]; (ii) Voronoi

tessellations [99]; (iii) Bouligand-Minkowsky fractal dimension [61], (iv) quadratic structur-

ing functions [19, 20], (v) Watershed algorithms [183], (vi) wave propagation [78], and (vii)

robot navigation [143, 253]. For example, in the next chapter the EDT is applied to gener-
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for k:=1 to R
for every pixel p in the boundary

if NOT [(p is a vertex) AND (k modulo 5=0)
AND (k modulo 45!=0)]
if [(k modulo 2=0) AND (k modulo 12!=0)

AND (k modulo 410!=0)]
grow p as 8-n

otherwise
grow p as 4-n

Figure 4.3: Algorithm for hexadecagonal growth
(source: [58]). R denotes the number of
iterations.

ate Voronoi diagrams. In addition, recently Schouten, Kuppens, and Van den Broek [253]

applied the EDT for robot navigation purposes.

Several methods for calculation of the EDT have been described in the literature [20, 86,

251, 253, 289], both for sequential and parallel machines. However, most of these methods

do not produce exact distances, but only approximations [66]. Borgefors [21] proposed a

chamfer distance transformation using two raster scans on the image, which produces a

coarse approximation of the exact EDT. To get a result that is exact on most points but can

produce small errors on some points, Danielsson [69] used four raster scans.

In order to obtain an exact EDT, two step methods were proposed. Two of the most

important ones are:

• Cuisenaire and Macq [66] first calculated an approximate EDT, using ordered prop-

agation by bucket sorting. It produces a result similar to Danielsson’s. Second, this

approximation is improved by using neighborhoods of increasing size.

• Shih and Liu [258] started with four scans on the image, producing a result similar

to Danielsson’s. A look-up table is then constructed containing all possible locations

where no exact result was produced. Because during the scans the location of the

closest object pixel is stored for each image pixel, the look-up table can be used to

correct the errors. Shih and Liu claim that the number of error locations is small.

4.3.1 Voronoi diagrams

Exact EDTs can be applied to obtain distance maps such as the Voronoi diagram (see Fig-

ure 4.4)1. The Voronoi diagram V (P ) is a network representing a plane subdivided by the

influence regions of the set of points P = {p1, p2, ..., pn}. It is constructed by a set of Voronoi

1The Voronoi web page: http://www.voronoi.com
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(a) (b)

Figure 4.4: Voronoi diagrams of (a) a set of points and (b) a set of arbitrary shapes as deter-
mined by way of region growing.

regions V (pi) which is, for any i, defined by

V (pi) = {x ∈ Z
2 : |x − pi| ≤ | x − pj|, for all j} (4.7)

Voronoi diagram generation of a space with arbitrary shapes (see Figure 4.4) is hard from

the analytical point of view [7, 12], but is easily solved by applying a growth algorithm.

4.4 Fast Exact Euclidean Distance (FEED)

In contrast with the existing approaches such as those of Shih and Liu [258] and Cuisenaire

and Macq [66], we have implemented the EDT starting directly from the definition in Equa-

tion 4.6. Or rather its inverse: each object pixel q, in the set of object pixels (O), feeds its ED

to all non-object pixels p. The naive algorithm then becomes:

initialize D(p) = if (p ∈ O) then 0, else ∞
foreach q ∈ O

foreach p /∈ O

update : D(p) = min(D(p), ED(q, p))

However, this algorithm is extremely time consuming, but can be speeded up by:

• restricting the number of object pixels q that have to be considered

• pre-computation of ED(q, p)

• restricting the number of background pixels p that have to be updated for each consid-

ered object pixel q
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Figure 4.5: Two examples of the test images used for the comparison of the city-block (or Chamfer 1,1) transform, Shih
and Wu’s 2-scan method (EDT-2), and the Fast Exact Euclidean Distance (FEED) transform.
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This resulted in an exact but computationally less expensive algorithm for EDT:

the Fast Exact Euclidean Distance (FEED) transformation. It was recently introduced by

Schouten and Van den Broek [254] (available as Appendix C). For both algorithmic and im-

plementation details we refer to this paper. For an improved version, named timed FEED

(tFEED), and an extension to fast handling of video sequences, we refer to [253]. Recently,

FEED was redefined such that it can be applied independent of the number of dimensions

needed/present [251] and introduces the three dimensional version of FEED (3D-FEED).

In its naive implementation, FEED proved already to be up to 3× faster than the algo-

rithm of Shih and Liu [258]. Providing that a maximum distance in the image is known a

priori, it is even up to 4.5× faster.

To be able to utilize FEED for the creation of WDMs, we have applied a few small

modifications to the implementation, compared to the algorithm as introduced in Schouten

and Van den Broek [254]. FEED was adapted in such a way that it became possible to define

a metric on which the WDM was based. The result of the application of various metrics is

illustrated in Figures 4.6, 4.7, and 4.8.

4.5 Benchmarking FEED

Shih and Wu describe in their paper “Fast Euclidean distance transformation in two scans

using a 3 × 3 neighborhood” [259] that they introduce an exact EDT. They propose their

algorithm as the, to be preferred, alternative for the fast EDT as proposed by Cuisenaire

and Macq [66]. Shih and Wu’s algorithm is the most recent attempt to obtain fast EDTs.

Therefore, this algorithm would be the ultimate test for our FEED algorithm.

We have implemented Shih and Wu’s algorithm (EDT-2) exactly as they described and

tested it on a set of eight images on both processing time and errors in the EDs obtained,

see Figure 4.5 for two example text-images. As a baseline, the city-block (or Chamfer 1,1)

distance was also taken into account.

In Table 4.1, the timing results can be found for the city-block measure, for Shih and

Wu’s two scans (EDT-2), and for FEED. As was expected, with a rough estimation of the ED,

the city block distance outperformed the other two algorithms by far (see Table 4.1). More

surprising was that FEED was more than twice as fast as EDT-2. However, the aim of this

research was to utilize exact EDT. Hence, next to the timing results, the percentage of errors

made in obtaining the ED is of interest to us. The city-block transform resulted for the set of

eight images in an error-level of less than 5%; see Table 4.2. Shih and Wu’s claimed that their

two scan algorithm (EDT-2) provided exact EDs. In 99% of the cases their claim appeared

justified. However, errors occur in their algorithm, which are reported in Table 4.2. So, FEED

appeared to be the only algorithm that provided the truly exact ED for all instances.
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Table 4.1: Timing results for a set of eight images on the city-block (or Chamfer 1,1) trans-
form, Shih and Wu’s 2-scan method (EDT-2), and for the Fast Exact Euclidean
Distance (FEED) transform.

Images Algorithms
City-block EDT-2 FEED

standard 8.75 s 38.91 s 17.14 s
rotated 8.77 s 38.86 s 18.02 s
larger obj. 8.64 s 37.94 s 19.94 s

Table 4.2: Errors of the city-block (or Chamfer 1,1) transform and of Shih and Wu’s two
scan algorithm (EDT-2). Note that no errors of FEED were observed since FEED
provides truly exact EDs.

Images Algorithms
City-block EDT-2

standard 2.39% 0.16%
rotated 4.66% 0.21%
larger obj. 4.14% 0.51%

4.6 Weighted distance mapping (WDM)

This section describes the WDM method. Distance maps in general are, for example, used

for skeletonization purposes [157] or for the determination of pixel clusters. Given a metric,

WDM provides a distance map representing a distance function, which assigns a weight to

all of the points in space. Such a weight can be a confidence measure, for example, deter-

mined by 1
ED

,
√

ED, or log(ED).

So, using distance functions, distance maps can be created [58]. This is done by growth

models based on these distance functions. These distance maps give an excellent overview

of the background-pixels that are close to a certain object pixel: A distance map divides the

space in a set of regions, where every region is the set of points closer to a certain element

than to the others.

4.6.1 Preprocessing

In order to reduce processing time or to enhance the final WDM, preprocessing algorithms

of choice can be applied. For instance, noise reduction and pre-clustering algorithms.

In the first case, a range can be within which is scanned for other points. If no points

with the same label are found within this range, this point is rejected as input for WDM.

In the second case, when data points having the same label, are within a range (as

was provided), and no other points with another label lay between, then the data points can
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be connected. When this is done for all data points with the same label, a fully connected

graph is generated for this cluster of points. Next, the same label can be assigned to all

points within this fully connected graph. Hence, instead of labeled data points, labeled

objects serve as input for the WDM.

4.6.2 Binary data

Let us first consider a set of labeled binary data points; i.e., each point in space either is or

is not an object point. An isolated pixel with value 0 at the origin is grown using FEED, up

to a chosen radius. Each grown pixel then receives a value according to its distance to the

origin. As default the ED is used, but any metric could be used. The resulting image defines

a mask B.

The output image is initialized with the input image, assuming 0 for an object pixel and a

maximum value for a background pixel. Then a single scan over the input image A is made.

On each pixel of A with value 0 (an object pixel) the mask is placed. For each so covered

pixel, the output value is updated as the minimum of the current value and the value given

by the mask.

The resulting output image contains then for each background pixel its minimum dis-

tance to the set of object pixels according to the metric of choice. In the case of binary data,

the WDM can be stored in one matrix. In Figure 4.6, some results of the WDM, using differ-

ent metrics, are shown using the same input image as Coiras et al. [58].

4.6.3 Multi class data

Now, let us consider the case that multiple labeled classes of data points are present and,

subsequently, WDM is applied for data space segmentation. In such a case, the class of the

input pixel that provides the minimum distance can be placed in a second output matrix.

The minimum distance value then indicates the amount of certainty (or weight) that

the pixel belongs to the class. This can be visualized by different color ranges, for each class.

In addition, a hill climbing algorithm can be applied, to extract edges from the distance

image and so generate a Voronoi diagram (see Section 4.3.1).

To determine the class to which the ED is assigned, the update step of FEED was

changed to:

update : if (ED(q, p) < D(p))

then (D(p) = ED(q, p); C(p) = C(q) )

where C is a class matrix, in which all data is assigned to one of the classes. Figure 4.7

illustrates the latter algorithm. It presents a set of six arbitrary shapes, their ED maps, and
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4 Multi class distance mapping

(a) (b) (c)

(d) (e) (f)

Figure 4.6: (a) is the original image. (b) is the same image after dilation by hexadecagonal
region growing. (c) is a distance map as presented by Coiras et al. [58]. (d), (e),
and (f) are weighted distance maps (WDM). (d) provides the extremes (i.e., the
original pixels and the boundary of the dilated image). (e) presents a discrete
distance map. (f) presents an gradual decrease in weight with the increase of
distance from the original pixels.

the classification as provided. The combination of the ED maps and the classification are the

input for a true WDM. The resulting WDM can serve four purposes:

1. It provides a confidence space. The complete data space is described by providing

certainties to unknown regions in the data space; e.g., 1
ED

,
√

ED, log(ED). This results

in fuzzy boundaries (see Figures 4.6e-f, 4.7b,d, and 4.8b).

2. Determination of the edges between categories (see Figure 4.7c,d). In addition, Voronoi

diagrams can be generated (see Figure 4.4a-b and cf. Figures 4.8a and 4.8c).

3. Distances between data can be determined, using any metric (see Figures 4.6c-f

and 4.8d).

4. Visualization of the categorized (fuzzy) data space, as illustrated in Figures 4.6e-

f, 4.7b,d, and 4.8b.
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Figure 4.7: From left to right and from top to bottom: the original image, the basic ED map, the fully segmented and
labeled space, and the labeled Weighted Distance Map (WDM), in which the original objects are projected
and where pixel intensities denotes the weight.
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4 Multi class distance mapping

4.7 An application: segmentation of color space

WDM as described in the previous section has been validated on various data sets (see for

example Figure 4.6 and 4.7). We will illustrate its use for the categorization of color in the 11

color categories (or focal colors) [30, 75, 219, 225]. This was one of the data sets on which the

mapping was validated. For more information on the topic of the 11 color categories see, for

example, the World Color Survey [140].

The clustered data is derived from two experiments that confirmed the existence of

the 11 color categories [28], as described in the previous chapter. The Color LookUp Table

markers that resulted from the experiments were RGB coordinates. These were converted

to HSI-coordinates [89]. Let us consider the Hue and Saturation axes of the HSI-color space,

using a slice of the HSI cylinder. In this slice, five color categories (i.e., brown, red, purple,

blue, and green) are projected. However, only four clusters are present. This is due to the

overlap between the color categories red and brown.

A bitmap image was generated, containing white background pixels and labeled pixels

representing each of the data points. For each category, the data points belonging to the

same cluster, were fully connected by using a line generator, as shown in Figure 4.8a. Next,

WDM was applied on the image; see Figure 4.8b. This resulted in two matrices. One of them

consists of the weights determined; in the other matrix the class each point is assigned to, is

stored. Their combination provides the ED map.

Last, a hill climbing algorithm extracted edges from the ED map, as shown in Fig-

ure 4.8c. On the one hand, this resulted in fuzzy color categories (providing certainties). On

the other hand, the extracted edges define a Voronoi diagram.

Since a few years the interest in color in the field of image processing exploded. An ED

map as presented, based on experimental data, provides an excellent way for describing the

color space. Next, the perceptual characteristics of the color categories could be exploited,

providing a confidence distribution and, subsequently, a metric for each of the color cate-

gories separate. Such a set of features can be utilized and can in combination with a ED

map, provide a true WDM.
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Figure 4.8: (a) The original image in which all data points (of four color categories) assigned to the same color category
are connected with each other, using a line connector. (b) The basic ED map of (a), in which the intensity of
the pixels resembles the weight. (c) The boundaries between the four classes, derived from the ED map as
presented in (b). A hill climbing algorithm was used to extract these boundaries. Note that (c) is the Voronoi
diagram of (a).
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4 Multi class distance mapping

4.8 Discussion

This chapter started with a brief overview of morphological operations and distance trans-

forms. Next, the algorithm which generates a Fast Exact Euclidean Distance (FEED) trans-

form, is introduced. It is compared with the city-block measure (as baseline) and with the

two scan algorithm of Shih and Wu [259], which can be considered as a state-of-the-art al-

gorithm on fast exact ED transforms. FEED proved to be computationally twice as cheap

as Shih and Wu’s algorithm. Moreover, in contrast with the algorithm of Shih and Wu,

FEED provides in all cases exact EDs. FEED is applied to generate Weighted Distance Maps

(WDM), providing a metric. Its use is illustrated by the segmentation of color space, based

on a limited set of experimentally gathered data points. WDMs, as proposed, provide com-

plete descriptions of data spaces, based on a limited set of classified data. Moreover, they

can be used to obtain Voronoi diagrams.

With the launch of a parallel implementation of FEED (tFEED) [253], the generation of

WDMs can probably be boosted in the near future. So, WDMs four main advantages can be

exploited even more: (1) A complete data space can be described, based on a limited set of

data points, (2) Data spaces can be visualized rapidly, providing the possibility to explore

the data space gaining more understanding, (3) Distances between data can be determined,

using any metric, and (4) Edges between categories can be determined. These features make

WDM an intuitive, flexible, and powerful tool for data visualization and interpolations in

data spaces, describing data spaces, and for either fuzzy or discrete data space segmentation.

In Section 4.7 of this chapter, a WDM was generated based on Color LookUp Table

(CLUT) markers projected in a slice of the HSI color space. In addition, a Voronoi diagram

was extracted from this WDM, providing the edges between the color categories in the slice.

In the next chapter, we will describe how WDM was applied on the complete set of CLUT

markers, as presented in the previous chapter. These will be pre-processed, fed to WDM,

and post-processed, in a manner such as introduced in this chapter.
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Abstract

A unique color space segmentation method is introduced. It is founded on features of hu-

man cognition, where 11 color categories are used in processing color. In two experiments,

human subjects were asked to categorize color stimuli into these 11 color categories, which

resulted in markers for a Color LookUp Table (CLUT). These CLUT markers are projected

on two 2D projections of the HSI color space. By applying the newly developed Fast Exact

Euclidean Distance (FEED) transform on the projections, a complete and efficient segmenta-

tion of color space is achieved. Thus, a human-based color space segmentation is generated,

which is invariant for intensity changes. Moreover, the efficiency of the procedure facilitates

the generation of adaptable, application-centered, color quantization schemes. It is shown to

work well for color analysis, texture analysis, and for Color-Based Image Retrieval purposes

and is, for example, suitable for applications in the medical and cultural domain.

This chapter is an adapted version of:

Broek, E. L. van den, Schouten, Th. E., and Kisters, P. M. F. (2005). Efficient human-centered

color space segmentation. [submitted]



5.1 Introduction

5.1 Introduction

Digital imaging technology is more and more embedded in a broad domain. Consequently,

digital image collections are booming, which creates the need for efficient data-mining in

such collections. An adequate model of human visual perception would facilitate data-

mining. Our approach, hereby, is to utilize human cognitive and perceptual characteristics.

In this chapter, we will focus on a generic image processing technique: A color quan-

tization scheme based on human perception. This unique color space segmentation is both

relevant and suitable for the development and study of content-based image retrieval (CBIR)

in the context of rapidly growing digital collections in libraries, museums, and historical

archives as well as in medical image collections [31].

We argue that in general color should be analyzed from the perspective of human color

categories. Both to relate to the way people think, speak, and remember color and to reduce

the data from 16 million or more colors to a limited number of color categories: black, white,

red, green, yellow, blue, brown, purple, pink, orange, and gray [75]. People use these cate-

gories in general when thinking, speaking, and remembering colors. Research from diverse

fields of science emphasize their importance in human color perception. The use of this

knowledge can possibly provide a solution for problems concerning the accessibility and

the availability of knowledge, where color analysis is applied in data-mining. In addition,

such a human-centered approach can tackle the computational burden of traditional (real-

time) color analysis [85, 136].

The 11 color categories are applicable for a broad range of CBIR domains, where in

specific (i.e., specialized) domains, other sets of colors might be more appropriate. In this

chapter, we regard the 11 color categories as they are used in daily life (see also Chapter 2).

These color categories are constructed and handled by methods that are presented in this

chapter. However, in the same way, it is possible to incorporate another set of colors, which

is user, task, or application specific.

This chapter presents a line of research starting with the psychophysical experiments,

described in Chapter 3. This provided us with markers for a Color LookUp Table (CLUT)

in the RGB color space. The boundaries between the color categories in the RGB space are

expected to be too complex to be determined, using the limited number of CLUT markers.

Therefore, we describe in Section 5.2 how the RGB space is transformed into two 2D projec-

tions of the HSI color space in which the boundaries are less complex. In Sections 5.3 and 5.4,

we describe how the CLUT markers are used to find the boundaries between the color cate-

gories in the 2D projections and how this is used to segment the complete color space. For

this, the Fast and Exact Euclidean Distance (FEED) transformation is used, which was briefly

introduced in the previous chapter. In Section 5.5, the CLUT markers are compared with the

segmented color space. Last, we draw some final conclusion in Section 5.6.
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5 Efficient Human-centered Color Space Segmentation

5.2 Preprocessing of experimental data

In general, color matching using a CLUT, based on the markers derived from the experimen-

tal results described in Chapter 3, could enhance the color matching process significantly

and may yield more intuitive values for users [75]. In addition, such a coarse color space

quantization of 11 color categories reduces the computational complexity of color analy-

sis drastically, compared to existing matching algorithms of image retrieval engines that use

color quantization schemes (cf. PicHunter [63]: HSV 4×4×4 and QBIC [85]: RGB 16×16×16).

The coarse 11 color categories quantization makes it also invariant with respect to intensity

changes. The experiments presented in Chapter 3, provided us with categorized markers for

a CLUT. In this section, we explain the preprocessing scheme that transforms these markers

in order to facilitate segmentation of the complete color space.

5.2.1 From the RGB CLUT markers to the HSI CLUT markers

The markers of the CLUT are RGB coordinates; however, the RGB color space is not percep-

tually intuitive (see also Chapter 2. Hence, the position and shape of the color categories

within the RGB color space are complex. Moreover, there are too little CLUT markers (see

also Appendix A) to directly determine the complex boundaries between the categories in

the RGB space. Therefore, for the full color space categorization, the HSI color space is used,

which is (i) perceptually intuitive, (ii) performs as good as or better than perceptual uniform

color spaces such as CIE LUV [159], and (iii) the shape and position of the color categories

are less complex functions of location and orientation, than with the RGB color space.

Let us now briefly discuss the HSI color space. The axes of the HSI space represent hue

(i.e., basic color index), saturation (i.e., colorfulness), and intensity (i.e., amount of white

present in the color). The shape of HSI color space can be displayed as a cylinder: intensity

is the central rod, hue is the angle around that rod, and saturation is the distance perpen-

dicular to that rod. The color categories’ orientation is as follows: Around the intensity axis,

the achromatic categories (i.e., black, gray, white) are located. The achromatic region has the

shape of an hourglass and is described with small saturation values, the complete range of

intensity, and the complete range of hue values. Around this achromatic region, the chro-

matic categories are located. Chromatic categories have high saturation values and occupy

a part of both the total hue and the total intensity range.

The 216 web-safe colors are clearly distinct for human perception. As a consequence,

in a perceptually intuitive color space as the HSI color space is, some distance is present be-

tween them. Moreover, the perceptually intuitive character of the HSI color space results in

an orientation of adjacent colors such that the web-safe colors are arranged by color category.

The first phase in preprocessing is the conversion of the RGB CLUT markers to HSI
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green (G)

red (R)

blue (B)

hue (H)

intensity (I)

saturation (S)

intensity (I)

hue (H)

saturation (S)

Figure 5.1: Left: The relation between the RGB and the HSI color space, from the perspective
of the RGB color space. Right: The cylinder shaped representation of the HSI
(hue, saturation, and intensity) color space, as used in this research.

CLUT markers. The conversions as defined by Gevers and Smeulders [89] are adopted. In

Figure 5.1 the RGB and HSI color spaces are visualized. In the RGB color space, the HSI axes

are denoted.

5.2.2 From 3D HSI color space to two 2D representations

Since the HSI color space is a 3D space, the boundaries between color categories consist of

3D functions. Unfortunately, the amount of HSI CLUT markers is too limited to determine

the exact boundaries. Since some categories are expressed by only a few data CLUT mark-

ers in color space, 3D segmentation based on these markers would evolve in very weak

estimations of the shape of color categories in color space.

However, the perceptually intuitive axes of the HSI color space do allow a reduction in

the complexity of boundary functions without loosing essential features of the boundaries.

The intuitive values that the axes represent, provided the means to separate chromatic and

achromatic categories using two 2D projections. As a result, the extracted boundaries are

functions in a 2D plane. Thereby, we use three assumptions:

1. The boundaries between achromatic categories and chromatic categories do not exces-

sively change over the hue range.
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5 Efficient Human-centered Color Space Segmentation

2. The boundaries between chromatic categories do not excessively change over the sat-

uration axis and can be approximated by a linear function toward the central rod of

the color space; i.e., the intensity axis. The intuitive features of the HSI space provide

strong arguments for the latter assumption: Consider a chromatic point of the outer

boundaries of the HSI space (with maximum saturation). When the saturation value is

lowered, the perceived color becomes ’decolorized’ or pale. Nevertheless, in general

the colors are perceived as belonging to the same color category.

3. The two boundaries between achromatic categories are each expressed with a single

intensity value.

The next phase in preprocessing is the generation of the 2D planes and, subsequently,

perform the segmentation in three steps: (i) separation of chromatic categories from achro-

matic categories, (ii) segmentation of the individual chromatic categories, and (iii) segmen-

tation of the individual achromatic categories. So, the 11 color categories of the HSI CLUT

were divided into two groups: the achromatic categories (i.e., black, gray, and white) and

the chromatic categories (i.e., blue, yellow, green, purple, pink, red, brown, and orange).

Note that each group is processed in a separate 2D plane; see Figures 5.3 and 5.4.

First, the achromatic categories were separated from the chromatic categories in a 2D

plane leaving out the hue axis resulting in a saturation-intensity plane. In this projection, the

achromatic categories are distinguished from the chromatic categories as a line and a cloud

of data points (see Figures 5.3a and 5.3b). Note that, when leaving out the hue axis, the main

color information is left out and thus, all individual chromatic categories resemble a single

cloud of data points.

Second, the segmentation of the chromatic colors is done by leaving out the satura-

tion axis: the hue-intensity plane. In this plane, the chromatic category data is projected.

The result is a plane with non-overlapping clouds of categorized points, as illustrated in

Figure 5.4a and 5.4b.

Third, the segmentation of the individual achromatic categories is performed. Since

these categories do not represent any basic color information, the hue axis does not contain

useful information for these categories. Thus, the segmentation of these individual achro-

matic color categories is done in a saturation-intensity plane (see Figure 5.3).

5.2.3 Labeling and connecting the HSI CLUT colors

Given these two 2D planes, boundary functions with a relatively low complexity are defined,

resulting in a computationally cheap, complete color space segmentation. The HSI CLUT

markers were plotted in the 2D planes discussed previously. In the next section, we describe

how distance transforms were applied to segment these 2D planes. In order to facilitate

56



5.3 Using distance maps

(a) (b) (c)

Figure 5.2: Connecting two data points p1 and p2 (with different slopes). (a) rise/run = 1, (b)
rise/run = 2 and, (c) rise/run = 0.5.

this process, two final preprocessing steps were applied in the 2D planes: (i) for each color

category, a fully connected graph is generated, using a line generator (cf. Figure 5.3a and

Figure 5.3b as well as Figure 5.4a and Figure 5.4b) and (ii) these graphs were filled resulting

in a convex hull to speed up the distance mapping (see Figures 5.3c and 5.4c).

For each color category, the fully connected graph was generated by connecting the

CLUT markers, by means of a line connector algorithm. For each unique pair of CLUT

markers points (p1(xp1, yp1) and p2(xp2, yp2)), belonging to the same color category and sit-

uated in the matrix[x][y], the line connector algorithm calculates coordinates that represent

the connection line between these points. These coordinates were calculated by using the

rise/run quotient between p1 and p2. Next, the coordinates were rounded to integers in

order to display them in the matrix (see Figure 5.2).

The clouds of data points in the 2D projections resemble ellipse-like shapes, which are

mimicked by the boundaries of the connected graphs of the color categories. Hence, for

each category we can assume that all points within the boundaries of the connected graphs

belong to the color category to which all individual data points were assigned. Subsequently,

the filled convex hulls are the initial estimation of the color categories within the HSI color

space.

5.3 Using distance maps

The CLUT markers resulting from the experiments, discussed in Chapter 3, are preprocessed

as described in Section 5.2. This resulted in a set of filled convex hulls in two 2D planes.

Because the information that is available about human color categorization does not classify

all possible points in color space, we applied distance mapping, where each point gets a
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5 Efficient Human-centered Color Space Segmentation

distance measure to the set of categorized points by humans. This assignment (i.e., the color

quantization scheme) has to be both good and fast.

The speed of distance transforms is determined by the precision needed. Images are a

priori an approximation of reality due to various forms of noise. It might be that introducing

additional approximations in the image processing chain to make it faster, has no effect on

the final quality of the application. But, how to prove that? Since assessing the validity

of this assumption is a difficult and subjective process, our goal was to design a distance

transform, which performs as accurate as possible, preferably exact.

Distance transforms can be applied to all kinds of data. In this chapter, we discuss the

11 color categories, which are generally applicable, as discussed in Chapter 2. However, the

categories that are needed depend on the specific application; e.g., a catalog of paintings

or a stained cell tissue database. There might be the need to adapt the color categories

quickly to specifications based on a certain domain or task. Moreover, since the perception of

individual users differs, systems are needed that employ user profiles [307], which would be

in our case: a user specific color space segmentation. The latter is of great importance since

users are in interaction with the systems, which use image analysis techniques, and judge

their results. Therefore, we wanted a fast color space segmentation regarding computer and

human resources.

The distance transform to be applied both needs to be fast enough and preferably exact.

For this purpose, we applied the Fast Exact Euclidean Distance (FEED) transform, which

was briefly introduced in the previous chapter. If preferred, a particular application can

later plug in a faster and less accurate distance transform to determine its speed-quality

curve and choose a setting.

5.4 Segmentation, post processing and utilization

Using FEED (see Chapter 4 and Appendix C), two distance maps were generated, one for

each 2D plane of the HSI color space (see Section 5.2 and Figures 5.3d and 5.4d). A hill climb-

ing algorithm is applied to determine the edges between the color categories (see Figure 5.3e

and 5.4e). Next, by way of curve fitting techniques, the extracted edges were converted to

Fourier functions that express the borders between the color categories. This approach is

applied to both 2D planes: (i) the saturation-intensity plane, in order to separate the achro-

matic from chromatic categories (see Figure 5.3) and (ii) the hue-intensity plane to segment

the individual chromatic categories (see Figure 5.4). Finally, segmentation of the achromatic

colors is conducted in order to have a completely segmented color space. A drawback for

the differentiation between the achromatic colors is the lack of achromatic CLUT markers.

We take two intensity values that describe the boundaries between individual achromatic
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5.4 Segmentation, post processing and utilization

categories in three sections of equal length.

With the latter step, the complete HSI space is segmented into the 11 color categories.

One Fourier function expresses the boundary between the chromatic and achromatic region

in a saturation-intensity plane (see Figure 5.3e). In total, 16 Fourier functions express the

boundaries between the chromatic categories in the hue-intensity plane (see Figure 5.4e).

The boundaries are stored in an intensity matrix of size 765 by 17. With these 13, 005

coordinates, a computational cheap categorization of 2563 color values into the 11 categories

is done as follows: Given the intensity value of some HSI value that is being categorized,

17 (16 + 1) border values are retrieved, which are used for the categorization process. One

border value, representing a saturation value, is used for global chromatic/achromatic cate-

gorization (see Figure 5.3e). In case of a chromatic color, further processing of 16 numbered

border values, is done to estimate the chromatic category (see Figure 5.4e). Each of these

border values contain either a hue value or a dummy value when no border exists for that

intensity range.

Please note, that with this implementation for some intensity value maximal six chro-

matic categories (boundaries of categories) are considered: first, the border for chromatic-

achromatic categorization (Figure 5.3e); second, when going from left to right through Fig-

ure 5.4e: borders 3, 12, 6, 4, and 1. So, the color quantization scheme has a computational

complexity that is lower-or-equal to a virtual HSI 6 × 2 × 1 quantization scheme. In case of

an achromatic color, the achromatic category is determined by means of the intensity value.

The presented implementation is a compact representation of the segmented HSI color

space: it requires only a few computing steps to categorize a RGB value. From that repre-

sentation, a fast categorization mechanism is easily established; by filling a 2563 table with

categorized RGB values, a fast, complete CLUT is available.
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Figure 5.3: The processing scheme of the separation of the chromatic from the achromatic color categories, in the
saturation-intensity (SI) plane, using human color categorization data (see Chapter 3): (a) The CLUT mark-
ers visualized in the SI plane of the HSI color space. (b) The fully connected graph of the categorized
CLUT markers that is subsequently filled to speedup the Fast Exact Euclidean Distance (FEED) trans-
formation [254]. (c) The Weighted Distance Map (WDM), created using FEED transformation. (d) The
chromatic-achromatic border, determined by a hill climbing algorithm, which can be described by Fourier
functions [95].
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Figure 5.4: The processing scheme of the separation of the chromatic color categories in the hue-intensity (HI) plane,
using human color categorization data (see Chapter 3) (note that the hue-axis is circular): (a) The CLUT
markers visualized in the SI plane of the HSI color space. (b) The fully connected graphs of the categorized
CLUT markers that are subsequently filled to speedup the Fast Exact Euclidean Distance (FEED) transfor-
mation [254]. (c) The labeled weighted distance map (WDM) created using FEED transformation. (d) The
borders between the chromatic color categories, determined by a hill climbing algorithm, which can be
described by Fourier functions [95].
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5.5 Comparison of CLUT and segmented color space

Using the segmentation of the two 2D color planes, as described in the previous subsection,

one of the 11 color categories is assigned to every point (i.e., color) in the whole 3D color

space. The validation of this categorization method consisted of two tests and the analysis

of their results: (i) categorization of non-fuzzy colors and (ii) categorization of fuzzy colors.

The segmented color space is considered valid if and only if it categorizes the stimuli used

in the experiments to the same categories as the subjects did.

The non-fuzzy colors are those colors that are categorized consistently to one color

category by the participants of the experiments, as described in Chapter 3. The fuzzy colors

are those colors categorized to two (or more) categories by at least 10 subjects. The fuzzy and

non-fuzzy colors together make up the set of CLUT markers, derived from the experiments.

In Table 5.1, the 11 color categories are listed. The segmented color space has a 100%

match with the experimental results. All non-fuzzy colors are categorized correctly. All

fuzzy colors are mapped in one of the categories to which they were assigned to in the

experiments.

Table 5.1: Colors and their neighbor colors in the segmented color space. The
neighbor colors for each color category are found after analysis of
the fuzziness of the experimental results.

Purple Pink Orange Red Brown Yellow Green Blue Black Gray White
Purple X X - X - - - X - - -
Pink X X X X - - - - - - -
Orange - X X - X X - - - - -
Red X - X X X - - - - - -
Brown - - X X X - - - - - -
Yellow - - - - - X X - - - -
Green - - - - - X X X - - -
Blue X - - - - - - X - - -
Black - - - - - - - - X X -
Gray - - - - - - - - X X X
White - - - - - - - - - X X

In Figure 5.5a, the non-fuzzy CLUT markers and the calculated borders of the chro-

matic categories have been plotted. In Figure 5.5b, the fuzzy CLUT markers in the plane

used for chromatic segmentation, have been visualized.

Since the hue and intensity axis are able to describe non-overlapping clusters for

chromatic categories, this 2D approximation was appropriate to segment the color space

with FEED (using only hue and intensity values). Figure 5.5b shows that fuzzy data points

are close to the calculated borders.
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(a) (b)

Figure 5.5: The two dimensional HI plane with the calculated chromatic borders. (a) shows
the non-fuzzy chromatic CLUT markers and (b) shows the fuzzy chromatic
CLUT markers. Each dot represents a W3C web-safe color. In Appendix B the
same Figure is shown as Figure B.4 with the non-fuzzy chromatic CLUT markers
labeled with their focal color.

Please note that in both Figure 5.5a and in Figure 5.5b some data points are printed on

the same spot in the HI plane. One should expect that the fuzzy and non-fuzzy set always

represent different points in the HI plane. Since pre-filtering of the CLUT markers was done,

removing all RGB values that were categorized to multiple categories, projection of the two

data sets in a HI plane will (occasionally) show data points on the same spot.

5.6 Conclusion

We have explained our approach toward color analysis, which exploits human perception

(i.e., the 11 color categories) instead of mere image processing techniques. The experimental

data (i.e., markers for a Color LookUp Table), as described in Chapter 3, is used as input

for a coarse color space segmentation process. The HSI color space is segmented, using two

2D projections of the HSI color space on which the recently developed Fast Exact Euclidean

Distance (FEED) transform is applied. This resulted in an 11 color quantization scheme, a

new color representation that is invariant for intensity changes.

The advantage of the color space segmentation method as proposed is threefold: (i)

it yields perceptually intuitive results for humans, (ii) it has a low computational complex-

ity, and (iii) it is easily adapted to other, application, tasks, and/or user dependent color

categories, as will be shown in Chapter 8–13. Each of these three aspects are of extreme
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importance [136] in image processing in general and especially in applications in the med-

ical and cultural domain, where users are in interaction with the systems that analyze the

images.

The use of the color space segmentation, as described in the current chapter, is illus-

trated in several research projects. Its results are published in over 20 articles (e.g., [31]).

This thesis provides an overview of these projects and their reports.

In general, it is our belief that the combination of human perception and statistical

image processing will improve the performance of data-mining systems that rely on color

analysis. Moreover, such a combination can help us in bridging the semantic gap present

in automated color analysis. From this perspective, a unique color space segmentation is

proposed, which is both relevant and suitable for color analysis in the context of rapidly

growing digital collections. Moreover, all means are provided to adapt it rapidly to a task, a

specific application, or to a user profile [307].

In the remaining chapters, the segmented color space, as presented in this chapter, will

be compared to other color quantization schemes for color-based image retrieval purposes.

This will be done in various settings combined with other techniques. Moreover, it will be

utilized for texture analysis (Chapters 10–13), image segmentation (Chapter 12), and shape

extraction (Chapters 10 and 13). However, first a newly developed CBIR benchmark is intro-

duced in which techniques and color quantization schemes can be compared to each other.
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Abstract

Although the need for benchmarking content-based image retrieval systems is eminent, a lack

of standards is still a major problem. This chapter introduces a CBIR benchmark (developed

conform the W3C guidelines) that can be used online and offline. To guarantee real-time per-

formance of the benchmark, the system uses cached matching results. Its standard database is

a collection of 60,000 images from the Corel image database; however, the system can process

any other image database. A set of four color quantization schemes (11, 64, 166, and 4096

bins) are included. Four distance measures are incorporated: the intersection distance, the

Euclidean distance, the quadratic distance, and a newly developed distance measure, which

takes into account intra bin statistics. Both other color quantization schemes and other dis-

tance measures can be easily included.



6.1 Introduction

6.1 Introduction

In the previous chapter a new, human-centered, highly efficient color space segmentation

was described, which can be applied as a color quantization scheme. However, to enable a

comparison by users of this quantization scheme with other schemes, an evaluation of vari-

ous methods had to be conducted. For the latter purpose, a CBIR benchmark is developed.

In the 90s, the first evaluations of color matching [138] and texture analysis [199] meth-

ods were published, followed by comparisons between algorithms for shape extraction and

matching. In the last two years of this decade, the first evaluations of complete CBIR sys-

tems were presented [213, 214, 216]. These early evaluations were followed by a few oth-

ers [151, 156] before the Benchathlon network [177] was initiated. Till then, as Gunter and

Baretta [101] stated: “the performance of CBIR algorithms is usually measured on an iso-

lated, well-tuned PC or workstation. In a real-world environment, however, the CBIR algo-

rithms would only constitute a minor component among the many interacting components

needed to facilitate a useful CBIR application; e.g., Web-based applications on the Internet.”

Hence, the Benchathlon network was founded to “develop an automated benchmark allow-

ing the fair evaluation of any CBIR system” [177].

The aims of the Benchathlon Network can be found on its website [177] or in a series of

articles [176, 186, 187, 188]. Next to the Benchathlon Network and Gunter and Baretta [101],

Liu, Su, Li, Sun, and Zhang [161] conducted evaluations on CBIR systems. From various

fields of research the need for benchmarking CBIR systems and their techniques was con-

firmed. Various evaluations of texture analysis techniques were presented [200, 257]. In

Chapter 9–11 more texture evaluations are discussed and new texture evaluations are pre-

sented. From CBIR’s fields of application the need for benchmarking CBIR systems also

emerged; especially in medicine [68, 149, 185, 186, 188, 325] but also in the field of cultural

heritage (e.g., museums and libraries) [296].

This chapter will discuss a CBIR benchmark used for various occasions, which is de-

veloped to facilitate judgment of retrieval results by users. It is used for the evaluation of

(i) distance measures, throughout various chapters, (ii) color quantization methods (Chap-

ter 7 and 8), (iii) texture analysis methods 11, and (iv) their combination (Chapter 12), which

defined complete CBIR engines. The utilization of the benchmark throughout the research

made sure that the human was constantly in the loop of the development of the CBIR tech-

niques.
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6.2 Benchmark architecture

The total benchmark system as developed in this project can be divided into two compo-

nents, as is shown in Figure 6.1. The front-end of the system, contains the online (i.e., acces-

sible through the WWW) user-interfacing module of the benchmark. Moreover, it includes

offline (i.e., that are not run while the benchmark is used) modules that execute matching of

color histograms and store matching results. The back-end, consists of a software module

that handles the calculation and storage of color histograms.

Both components are connected to the same two databases: the image database and

the histogram database. The image database contains 60,000 images of the Corel im-

age database, which is one of the most frequently assessed image databases for CBIR re-

search [186]. For texture analysis purposes, Müller et al. propose the MIT VisTex texture

images database [178], included for research toward texture perception, see Chapter 11. The

histogram database consists of several tables. For each quantization scheme in the bench-

mark, these tables contain the histogram for all images that occur in the image database.

6.2.1 Front-end

The online front-end module of the benchmark facilitates in user registration, user log-in,

displaying matching results and storing user judgments. Additional features of this module

are:

1. W3C HTML 4.01 Validation of benchmark [294], W3C Link Checking [309], and sup-

port of the “viewable with any browser campaign” [44].

2. Dynamic HTML: Size of the images are dynamically optimized to screen resolution.

3. Logging of the system configuration the participant is using; i.e., screen-size, settings

of the video-card, operating system, and browser.

4. Automatic notification by e-mail of the start and end of the benchmark, to both partic-

ipant and researcher.

5. Providing the possibility for a break at any time.

These features provide a general framework for multiple benchmark configurations, as de-

scribed in Chapter 7 and 8 and used as the foundation of the Scientific User Interface Testing

(SUIT) project [32].

The offline front end module of the benchmark is used to cache the matching results.

In other words, the actual matching process is performed offline, prior to the benchmark.

This saves processing time during the actual benchmark, which was preferred because then

(i) we could guarantee a stable multi-user benchmark environment and (ii) the naive imple-
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Figure 6.1: Schematic overview of the benchmark system. In the left rectangle, the front-end
of the system is visualized, including the online and offline benchmark modules.
In the right rectangle, the back-end of the system is visualized.

mentation of high dimensional quantization schemes, like RGB 16 × 16 × 16 do not allow

real-time image retrieval. Thus, for each quantization scheme in the benchmark the process-

ing task was equal: retrieving the images from pre-stored lists.

The matching module controls the matching engine (software). Matching an image

is done by retrieving histograms from the histogram database. Given a distance measure,

which is provided by a parameter, the distance between the query histogram and the re-

trieved histograms is calculated. The distance measures used in the benchmark are de-

scribed in Section 6.6. As soon as the ranking is known, the images are retrieved from the

image database.

6.2.2 Back-end

The calculation and storing of histograms is done offline by the software module in the

back-end component of the benchmark system. This module can be equipped with an ar-

bitrary quantization scheme (e.g., see Chapter 5 and 6). Once the quantization schemes are

defined, this software is able to calculate color histograms and store them in the appropriate

histogram table. In order to execute, three parameters have to be provided:

File-listing: A text-file, which contains the disk location of the images, for which a color

histogram has to be generated.

Quantization scheme: For each entry in the file-listing the module will create a color his-
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togram using the quantization scheme that is specified by a parameter. Normally, the

histogram is calculated by quantizing the color value of each pixel of an image, ac-

cording to some color space. However, the 11 color categories require a somewhat

different approach. To generate the color histogram, the pixels of an image have to be

categorized by searching in the segmented HSI color space. This process is completely

different than quantizing the axis of a color space, as was discussed in the previous

chapter.

Table name: Once the calculation of a histogram is finished, the histogram database is ac-

cessed for storing it. The designated table is opened, a new histogram-ID is generated

and the histogram is stored. The histogram database is discussed more thoroughly

later on.

6.3 Image retrieval engine

In Figure 6.1, the matching module is visualized, encapsulated by the offline front-end of

the benchmark. This program requires three parameters: (i) the index (ID) of the query

image, (ii) the name of the histogram table denoting which quantization scheme is preferred,

and (iii) the distance measure. In Section 6.6, the distance measures that are supported are

defined. If preferred, this module can be easily equipped with additional distance measures.

Matching is done by calculating the histogram distance between the query-histogram

and all other histograms in the histogram table. To limit memory use with respect to a very

large histogram database, a linked list is updated during matching keeping track of the best

25 images. The output of the program is a list containing links to the top-25 images. In the

benchmark setup, the offline benchmark module takes care of storing the output, which is

printed on the command line. This engine is also used as part of an online retrieval test

engine. In that setup, the output is the input for a program that generates html code for

visualization of retrieval results.

6.4 Databases

The benchmark system contains three databases: (i) the image database, (ii) the histogram

database, and (iii) the pre-stored results database. The default image database contains

about 60,000 images of the Corel image database. The histogram database contains for each

quantization scheme a unique histogram table. In general, these histogram tables are com-

plete mappings of the image database. However, it is also possible to fill histogram tables

with subsets, when only a specific category (subset or collection) of the image database is of

interest. Each histogram table contains four fields of information, namely:
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ID In this field, a unique ID is stored. This ID is currently used as a parameter for the

matching software. In later developments, when the image database is very large (e.g.,

> 1 million images), the ID can be used to express table relations. For example, the

matching process can be made faster when indexing on the histogram table is done

with use of pre-filtering results. These results are stored in a separate table using the

ID of the histogram table as a reference.

Filename In this field the file-name and location of the image are stored.

Dimensions The size of the image is stored in this field. This information is used for his-

togram normalization during the matching process.

Histogram(n) This field contains the histogram of an image. Hence, for each quantization

scheme the size of this field (n) is different (e.g., 11, 4096).

6.5 Result caching versus pre-storing of histograms

As mentioned before, the back-end facilitates in calculating and storing color histograms

in a database, which is updated by an offline process. The matching engine, situated in

the front-end, performs the matching process by retrieving histograms from this database.

The processing time of the matching engine is thus not influenced by the calculation of his-

tograms, but only by the retrieval of histograms and the calculation of histogram distances.

The benchmark system supports multiple image retrieval setups, with varying dimen-

sionality. Therefore, it does not exploit online image retrieval, but rather uses cached match-

ing results.

Given a query, the image retrieval process involves three stages that require processing

time:

1. Calculation of the color histograms

2. Comparison of the histograms with a distance measure

3. Presenting matching results

A naive image retrieval system would perform these steps online. Pre-storing histograms

allows to do the calculation of the first stage offline and speed up the online image retrieval

process. By caching the matching results, the calculations of the second stage are also done

offline. This caching mechanism guarantees a working space that is invariant to the com-

plexity (dimensionality) of the image retrieval engine that is being benchmarked. Note, that

this caching mechanism is only possible in a benchmark setup since the queries are known

in advance. Hence, only the third stage: presentation of the images, has to be done online.

In Chapter 2, we have discussed the calculation of color histograms. The issue of pre-
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senting the matching results will be briefly touched in the general discussion (Chapter 14).

In the next section of this chapter, we will discuss the second stage as mentioned above:

Comparison of color histograms, using a distance measure.

6.6 Distance measures

An image can be represented by a color histogram, defined by a color quantization scheme

applied on a color space or on the 11 color categories (see also Chapter 2). In order to express

the (dis)similarity of two histograms into a numeric value, a distance metric is used. In

literature, a wide variety of distance measures can be found. For each distance measure

the calculation method differs, leading to other estimations with respect to the similarity

images represented by the histograms. As a consequence, the ranking of images, when a

(query) image is compared to a set of images, will be different for each measure. Another

difference between the distance measures is their computational complexity.

We will discuss three distance measures as applied in our research, starting with dis-

similarity measures for feature vectors based upon the Minkowski metric: the intersection

distance and the Euclidean distance. The Minkowski metric between two points p = (x1, y1)

and q = (x2, y2) is defined as:

d

k(p, q) =
(

|x1 − y1|k + |x2 − y2|k
)

1
k
. (6.1)

This metric can be adapted to compare histogram distance. The intersection distance was

investigated for color image retrieval by Swain and Ballard [287]. The histogram distance,

calculated per bin m, between a query image q and a target image t is denoted as:

Di(q, t) =
M−1
∑

m=0

|hq[m] − ht[m]|, (6.2)

where M is the total number of bins, hq is the normalized query histogram, and ht is the

normalized target histogram. We recognize Di(q, t) as the Minkowski form metric with k=1.

The Euclidean distance is a Minkowski form with k=2:

De(q, t) =

√

√

√

√

M−1
∑

m=0

(hq(m) − ht(m))2
. (6.3)

The distances (i.e., calculated Minkowski-form distance measures) only take account

for the correspondence between each histogram bin (see Figure 6.2a) and do not make use

of information across bins. This issue has been recognized in histogram matching. As a

result, quadratic distance is proposed to take similarity across dimensions into account (see

Figure 6.2b). It has been reported to provide more desirable result than only matching be-
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Figure 6.2: (a) Minkowski-form distance metrics compare only similar bins between his-
tograms. (b) Quadratic-form distance metrics compare multiple bins between
histograms using similarity matrix A = [aij].

tween similar bins of the color histograms [242]. However, since the histogram quadratic

distance computes the cross similarity between colors, it is computationally expensive. The

quadratic-form distance between two feature vectors q and t is given by:

Dq(q, t) = (hq − ht)
TA(hq − ht), (6.4)

where A = [aij] is a similarity matrix. aij denotes the similarity between elements with

indexes i and j. Please note, that hq and ht are denoted as vectors.

The three distance measures as presented in this section are those which were applied

in our research. However, a broad range of alternative distance (and similarity) metrics

exists; e.g., the binary set quadratic distance and the Mahalanobis distance. For thorough

descriptions of distance and similarity measures, we refer to Smith [273].

Note that the distance measures used, require the normalization of histograms. This

can be achieved either by normalizing all images to an arbitrary size before they are pro-

cessed or by normalizing the histogram resulted from the processed image. For the latter,

we introduce the following class of normalizations:

h

k =
h

(
∑M−1

m=0 |h[m]|k)1/k
. (6.5)

Moreover, the number of bins must be the same and the color information coded in the bins,

which are compared, must be equal for all images under investigation.
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6.7 Conclusions

The benchmarking framework we developed, provides means to test and compare (parts

of) CBIR engines. To ensure fast performance, we executed the benchmark with retrieval

results that were already stored (cached). So, users can judge retrieval results, independent

of retrieval speed. This is conform the advice of Leung and Ip [156] who stated that “a cen-

tral aim for the benchmark is to test the ability to retrieve images by content rather than

the speed of retrieval.” In addition, Puzicha and Rubner [216] stated: “Performance com-

parisons should account for the variety of parameters that can affect the behavior of each

measure. ... A fair comparison in the face of this variability can be achieved by giving every

measure the best possible chance to perform well.”

In the next two chapters, two benchmarks are presented. The first benchmark was de-

veloped to evaluate both low and high dimensional retrieval engines. However, exhaustive

evaluation of distance measures such as done by Zhang and Lu [325], was not our intention.

In order to restrict the size of the first benchmark, we selected a simple (i.e., the intersec-

tion distance [287]) and an advanced distance measure (the quadratic distance [193]), suited

for respectively low and high dimensional schemes. The first benchmark incorporates four

quantization schemes (i.e., 11, 64, 166, and 4096 bins). Based on the results of the first bench-

mark, the second benchmark uses only two quantization schemes (i.e., 11 and 4096 bins)

and combines these with the intersection measure and with a newly developed distance

measure, which utilized intra-bin statistics. In Chapters 11 and 12 the benchmark is also

used for judging respectively texture analysis techniques and object-based image retrieval

engines.
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Abstract

We present the concept of intelligent Content-Based Image Retrieval (iCBIR), which incorpo-

rates knowledge concerning human cognition in system development. The present research

focuses on the utilization of color categories (or focal colors) for CBIR purposes, in particularly

considered to be useful for query-by-heart purposes. The research presented in this chapter

explores its potential use for query-by-example purposes. Their use was validated for the field

of CBIR in two experiments (26 subjects; stimuli: 4 times the 216 W3C web-safe colors) and

one question (”mention ten colors”). Based on the experimental results a Color LookUp Table

(CLUT) was defined. This CLUT was used to segment the HSI color space into the 11 color

categories. With that a new color quantization method was introduced making a 11 bin color

histogram configuration possible. This was compared with three other histogram configura-

tions of 64, 166, and 4096 bins. Combined with the intersection and the quadratic distance

measure we defined seven color matching systems. An experimentally founded benchmark

for CBIR systems was implemented (1680 queries were performed measuring relevance and

satisfaction). The 11 bin histogram configuration did have an average performance. A promis-

ing result since it was a naive implementation and is still a topic of development.

This chapter is almost identical to:

Broek, E. L. van den, Kisters, P. M. F., and Vuurpijl, L. G. (2004). The utilization of human

color categorization for content-based image retrieval. Proceedings of SPIE (Human Vision and

Electronic Imaging IX), 5292, 351-362.
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7.1 Introduction

Digital media are rapidly replacing their analog counterparts. Less than 10 years ago a digi-

tal photo camera was solely used in professional environments [129]. In contrast, nowadays

many home users own a digital photo camera. This development is accompanied by (i) the

increasing amount of images present on the Internet, (ii) the availability of the Internet for

an increasing number of people, and (iii) a decline in digital storage costs.

As a result, the need for browsing image collections emerged. This development gave

birth to a new field within Information Retrieval (IR): image retrieval. When images are part

of a web-page or when images are textually annotated in another form, IR-techniques can

be utilized. However, how to search for images that are not properly annotated? We will

first discuss quantitative followed by qualitative arguments, that point out the relevance

of Content-Based Image Retrieval (CBIR) . CBIR uses features of the image itself (i.e., color,

texture, shape, and spatial characteristics), which enables us to search for images that are

not textually annotated.

Murray [189] determined in his paper ”Sizing the Internet” on July 10, 2000 that 2.1

billion unique pages were present on the Internet. He further states that “Internet growth

is accelerating, indicating that the Internet has not yet reached its highest growth period.”.

Currently, estimates of the number of unique pages range from over 50 million [191] up

to over 12 billion [123]. In addition, Murray determined the average number of images

present on a page to be 14.38. One year later Kanungo et al. [137] drew a sample of Internet

(consisting of 862 pages) and determined the average number of images per page as being

21.07. Unfortunately, neither of these papers report their definition of an image. The latter is

of importance since one can make a distinction between images (e.g., cartoons and photos)

and web graphics (i.e., backgrounds, bullets, arrows, and dividers). Furthermore, the size of

the “invisible web” (i.e., databases available through websites) was not taken into account.

From the previous facts can be derived that between 720 million and 250 billion images are

present on the Internet. Due to a lack of statistical data, we can not make an estimation

of the two other sources of images: the “invisible Internet’ and home users’ private image

collections. However, it is safe to say that these two latter sources of images, will increase

the number of images substantially.

Next to the quantitative argument as discussed above, a qualitative argument can be

made that illustrates the importance of CBIR. Let P be a square of pixels. P either consist

of characters c or is an image i. Let i be a graphic itemizing bullet, typically of size 82 to

262 pixels. Let c be the word “the”. Using a standard font-size the word “the” needs a

square of 172 pixels, which equals the average size of a bullet. However, a graphic itemizing
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bullet can, for example, resemble “the footprint of a bear”1 using as much pixels but having

a much richer semantic content. So, the saying “a picture is worth more than a thousand

words” holds when considering the semantics that can be expressed per area.

Based on these considerations it can be concluded that CBIR is of significant impor-

tance for IR in general, for retrieval of unannotated images in image databases, and for

home users that manage their own image (e.g., photo) collections. However, as Smeulders

et al. [270] noted in 2000 “CBIR is at the end of its early years” and is certainly not the an-

swer to all problems. To mention a few, CBIR-engines are not capable of searching beyond

a closed domain, are computationally too expensive, have a low retrieval performance, and

do not yield results that match the needs of the user. Therefore, the CBIR techniques used

are still subject of development.

Due to the large differences between users’ search strategies, even interactive user-

adaptable CBIR-engines have been proposed [87, 92]. Such an approach is as useful as it is

complex. We will attempt to find out whether such an approach is needed at this moment

in CBIR development.

Our approach to improve the performance of CBIR systems is through the utilization

of knowledge concerning human cognitive capabilities. In our research the distinction is

made between query-by-memory and query-by-example , each requiring cognitive processes.

With query-by-memory the user has to define image features by memory, whereas in case of

query-by-example an example image is supposed to be present. A CBIR engine uses features

such as shape, spatial characteristics, texture, and color to explore the image content. The

current research will focus on the latter feature: color. It will be shown in this chapter that

human color categories can be utilized for CBIR techniques.

7.1.1 Query-by-Example versus Query-by-Heart

Most CBIR-engines distinguish two forms of querying, in which the user uses either an ex-

ample image (query-by-example) or defines features by heart, such as: shape, color, texture,

and spatial characteristics (query-by-heart). In the latter case, we are especially interested in

the use of the feature color. In the remaining part of this article we therefore define query-

by-heart as query-by-heart utilizing color. At the foundation of both query-by-example and

query-by-heart, lies a cognitive process, respectively color discrimination and color memory.

Let us illustrate the importance of the distinction between query-by-example and query-by-

heart by a simple example. Imagine a user wants to find images of brown horses.

Suppose the user possesses one such image and uses it to query-by-example. Images

found will be matched to the example image by the CBIR engine. The resulting images are

1Text and bullet are present on: http://www.w3schools.com/graphics/
graphics_bullets.asp [accessed on July 31, 2005]
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presented to the user. The user compares all retrieved images with his own image and with

each other. This comparison we call the process of color discrimination. So, in this process

the colors are (directly) compared to each other.

In the case of query-by-heart the user is required to retrieve the color brown from

memory. Probably, this will not be one particular color, but rather a fuzzy notion of some set

of colors: a color category, based on color memory. Each of the elements of this brown set

(or category) are acceptable colors. There is no need for several types of brown. Providing

the keyword ”brown” or pressing a button resembling the fuzzy set brown is sufficient.

In both forms of querying the CBIR-system can use a Color Look-Up Table (CLUT) for

the determination of the elements of this set, described by R, G, and B-values. The set is

fuzzy due to the several influences on the color (of the object of interest), such as the color

of the surrounding and the semantic context in which the object is present.

However, it is clear that a distinction should be made between color categorization

by discrimination and color categorization by memory. An important distinction because

humans are capable of discriminating millions of colors but when asked to categorize them

by memory, they use a small set colors: focal colors or color categories [16, 93, 232]. Despite

the fact that the importance of such a distinction is evident, this differentiation is not made

in CBIR-systems.

We propose to use the 11 color categories for query-by-heart purposes in CBIR. For this

purpose the front end of a CBIR engine was already extended with an eleven color pallet,

as described in [42]. The 11 color matching engine perfectly fits this interface. However, we

wanted to explore the use of the 11 color categories further and extend their use to query-by-

example. But before this was done an endeavor was made toward experimental evidence

for the 11 color categories.

7.2 The benchmark

In order to assess the validity of our approach for image retrieval, we have made a first

comparison study with the three color matching algorithms described above. The field of

IR provides two metrics for estimating retrieval effectiveness: recall and precision. Recall

signifies the relevant images in the database that are retrieved in response to the query.

Precision is the proportion of the retrieved images that are relevant to the query.

recall = #relevant retrieved
#relevant

precision = #relevant retrieved
#retrieved

(7.1)

The key issue is to determine which images are relevant. Merriam-Webster’s dictio-

nary [181] defines relevance as “ the ability (as of an information retrieval system) to retrieve

material that satisfies the needs of the user ”. So, relevance concerns the satisfaction of the user.
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The judgment of users is the only way to determine the recall and precision of the matching

algorithms [116].

As we are unable to a priori approximate the number of relevant images for a given

query, it is not possible to determine the recall of the systems. We can only examine their

precision. The number of retrieved images follows from the retrieval and is fixed to 15 for

this experiment. So, it is required to know the number of relevant retrieved images, for

which the experiments described in this section are used.

7.2.1 Histogram configurations

Four histogram configurations were used (11, 64, 166, and 4096 bins), each having their

own quantization method. For the histogram configuration using 11 bins a quantization

method was used based on the proposed segmented HSI color space. The configuration

containing 64 bins is inspired by the PicHunter [63] image retrieval engine, which uses a

HSV(4×4×4) quantization method. The quantization method used for the 166 bins is similar

to the approach described in [274]. We call the configuration HSV(18 × 3 × 3)+4, meaning

that the quantization was performed for 18 hues, 3 saturation, 3 values, and 4 achromatics

(representing the central rod in the HSV color space). The last histogram configuration is

the QBIC configuration using 4096 bins [85, 193]. The quantization method used for this

configuration is RGB(16 × 16 × 16). This (computational heavy) configuration is picked

to show the insignificance of the color space (used for quantization) when a large number

of bins is used. Please note that the color histogram matching methods described in the

previous Section have been implemented for this experiment and that no efforts have been

made to exactly copy the optimized matching algorithms of the PicHunter, QBIC, and the

system described by [274].

7.2.2 Distance measures

Two histogram matching functions are used in the current setup of the benchmark: the

histogram intersection distance and the quadratic distance. For other histogram matching

functions we refer to works of Gonzales [95] and Puzicha [216]. We have chosen for these

two measures because: (i) the intersection distance is one of the most used and widely ex-

cepted measures, (ii) the quadratic distance is reported as performing good [193], and (iii)

we had to limit the number of measures since our focus lies on quantization and a bench-

mark should be workable. Exhaustive testing of all distance measures was therefore not

conducted.

Swain’s [287] color-indexing algorithm identifies an object by comparing its colors to

the colors of each of the potential target objects. This is done by matching the color his-
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tograms of the images via their histogram intersection; see also the previous chapter. The

quadratic distance measures is used in QBIC [85]; see also the previous chapter. Since it

is computationally expensive in its naive implementation optimizations are proposed, as

described in [102].

7.2.3 Design

For the benchmark two distance measures are chosen: the intersection distance (see Equa-

tion 6.2) and the quadratic distance (see Equation 6.4). We have used the four histograms,

consisting of respectively 11, 64, 166, and 4096 bins (as described in 7.2.1. Each distance mea-

sure was applied on each number of bins, with one exception. The combination of 4096 bins

with the quadratic distance measure was found computationally too expensive to use[102].

So, as denoted in Table 7.1, in total seven systems that are compared in this benchmark.

Table 7.1: The seven engines incorporated in the CBIR-benchmark,
defined by their color quantization scheme (i.e., 11, 64, 166,
or 4096 bins) and the distance measure applied; i.e., the
intersection distance (ID) or the quadratic distance (QD).

11 bins 64 bins 166 bins 4096 bins
Intersection distance ID-11 ID-64 ID-166 ID-4096
Quadratic distance QD-11 QD-64 QD-166

For each system, 20 query results had to be judged by human subjects, making a total of 140

per subject. Each set of 140 queries was fully randomized, to control for influence of order.

Normally such retrieval results are presented in their ranked order. However, if this would

have been done in the experiment the subjects would be biased to the first retrieval results

after a few queries. Therefore, the ranking of the retrieved images is presented in random

order.

Each query resulted in 15 retrieved images, presented in a 5×3 matrix. On the left side

of this matrix the query image was shown. The layout (4:3) and the size of the images were

chosen in such a way that the complete retrieval result was viewable and no scrolling was

necessary (see Figure 7.1).

7.2.4 Subjects, instructions and data gathering

12 subjects, both men and women in the age of 20-60, participated in the benchmark, making

a total of 1680 query-results (one of them did not finish the experiment). The subjects were

asked to judge the retrieved images solely based on the color distribution hereby ignoring

the spatial distribution of the colors. It was emphasized that semantics, shape, etc. should
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Figure 7.1: The interface of a query such as was presented to the subjects. They were asked
to select the best matching images and to rate their satisfaction. See Figure B.6 in
Appendix B for a large full color print of this screendump.

not influence their judgment. The judgment of the subjects was two-fold. On the one hand

they were asked to mark the images that they judged as relevant. On the other hand, they

were asked to indicate their overall satisfaction with the retrieved results on a scale from 1

to 10 (see Figure 7.1).

We recorded for each query of each participant: the image ID, the query number, the

distance measure used, the number of bins used, satisfaction rate, and images judged as

relevant.

Both the number of selected images and the rating for each query were normalized per

person. This was necessary since the range of the number of selected images as well as the

rating of satisfaction varied strongly between subjects. The normalized values were used

for the analysis. How this normalization was done is defined in the next section.

7.2.5 Normalization of the data

The participants’ strategies for selection and rating of the retrieved images varies enor-

mously. On behalf of the analysis, a normalization of the scores was applied, for each

participant separately.
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Normalizing a range of scores takes the maximum and minimum score possible and

the maximum and minimum score provided by the participant into account. Such a trans-

formation is defined by:

Sn = a · Sp + b, (7.2)

where Sn is the normalized score, Sp is the score provided by the participant, and a and b are

defined as:

a = max−min
maxp −minp

b = max−a · maxp (7.3)

with max and min being respectively the maximum and minimum score possible and maxp

and minp being the maximum and minimum score provided by the participant. Note that

where Sp is an integer, the normalized score Sn is a real number, since both a and b are real

numbers. However, this is not a problem for further analysis of the data.

7.2.6 Results

We have analyzed the data using six one-way ANalyses Of VAriance (ANOVA). The sys-

tems were compared as well as their compounds: their histogram configuration (11, 64, 166,

and 4096 bins) and their distance measure (quadratic distance QD and the intersection dis-

tance ID). This was done for the number of images indicated as relevantly retrieved, by the

users and for the overall rated satisfaction of the query-result, as indicated by the users. See

also Table 7.1, which provides an overview of all engines and their compounds. Table 7.2

provides the mean number of images selected and Table 7.3 provides the mean rated satis-

faction for each of these engines.

For both the relevant retrieved images as the satisfaction rate, strong differences were

found between the seven systems (resp. F(6,1673) = 10.39, p < .001 and F(6,1673) = 12.72,

p < .001). Nevertheless, for both the relevant retrieved images and the rated satisfaction,

the systems could be clustered in three groups, using Duncan’s multiple range post hoc

test [81, 107] (p < .05). This was done by the construction of homogeneous subsets (i.e.,

clusters), assuming equal variances. In Tables 7.2 and 7.3 the three groups are denoted by

italic, bold, and underlined fonts.

A more detailed analysis, revealed a clear influence of both the distance measure

(F(1,1678) = 38.09, p < .001) and the number of bins (F(3,1676) = 12.75, p < .001), on the

number of relevant images. The same results were shown on the satisfaction for both the

distance measure (F(1,1678) = 45.74, p < .001) and the number of bins (F(3,1676) = 15.73, p <

.001).

In order to determine the variability between subjects in their judgments two addi-

tional one-way ANOVAs were done. Their outcome was that the subjects differ in a large
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Table 7.2: The seven engines incorporated in the CBIR-benchmark, defined by their color
quantization scheme (i.e., 11, 64, 166, or 4096 bins) and the distance measure ap-
plied; i.e., the intersection distance (ID) or the quadratic distance (QD). For each
engine, the average number of images denoted (i.e., selected) as being correct is
provided. Moreover, the engines were clustered by performance using the Dun-
can’s multiple range test (p < .05). Three clusters were identified, denoted by
italics, bold and underlined fonts.

11 64 166 4096
ID 3 .78 4.41 4.65 5.14
QD 3 .44 3 .56 3 .61

Table 7.3: The seven engines incorporated in the CBIR-benchmark, defined by their color
quantization scheme (i.e., 11, 64, 166, or 4096 bins) and the distance measure ap-
plied; i.e., the intersection distance (ID) or the quadratic distance (QD). For each
engine, the average rating of satisfaction are provided. Moreover, the engines
were clustered by performance using the Duncan’s multiple range test (p < .05).
Three clusters were identified, denoted by italics, bold and underlined fonts.

11 64 166 4096
ID 4 .93 5.47 5.60 6.06
QD 4 .71 4 .72 4 .80

extent on both their satisfaction (F(11,1668) = 38.77, p < .001) and the as relevant judged

images (F(11,1668) = 39.03, p < .001). For satisfaction we identified five groups (i.e, clusters)

of subjects and for the number of relevant images we were able to identify seven groups (i.e,

clusters) of subjects, again using Duncan’s multiple range post hoc test [81, 107] (p < .05).

Since 12 subjects participated, this illustrates the enormous inter personal differences in

rated satisfaction and in the judgment of when an image is relevantly retrieved.

7.3 Discussion

The new color quantization scheme (or segmentation), introduced in the previous chapter,

was compared with histograms consisting of 64, 166, and 4096 bins. This was done using

two distance measures: the intersection distance and the quadratic distance. The seven

resulting systems were tested in a benchmark.

The system that combined the 11 bin histogram with the intersection distance measure

performed better than all systems using quadratic measures, but it performed not as good

as systems using a stronger quantization of color space (i.e., used histograms with resp. 64,

166, 4096 bins) combined with the intersection distance measure. So, our naive implemen-

tation of the 11 bin concept should be boosted in order to be comparable with systems using

histograms with more bins.
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7.3 Discussion

A few explanations can be given for the lack of performance. Since, we have used

an extreme weak quantization relatively, much performance can be gained by incorporating

statistical techniques, such as within-bin color distributions. Moreover, the 11 color category

matching approach was initially developed for query-by-heart purposes, where with the

benchmark it was tested for query-by-example purposes.

However, an advantage of the 11 bin approach is its low computational complexity.

On this issue, the 11 bin concept outperforms the other histograms by far. Taking in con-

sideration that the latter is of extreme importance [136] in the field of CBIR, the results were

very promising. In the next chapter, an enhanced 11 color categories approach is introduced,

accompanied by a matching, new similarity measure.
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Abstract

In this chapter, a new weighted similarity function was introduced. It exploits within bin

statistics, describing the distribution of color within a bin. In addition, a new CBIR benchmark

was successfully used to evaluate both new techniques. Based on the 4050 queries judged by

the users, the 11 bin color quantization proved to be useful for CBIR purposes. Moreover, the

new weighted similarity function significantly improved retrieval performance, according to

the users.

This chapter is a compressed version of:

Broek, E. L. van den, Kisters, P. M. F., and Vuurpijl, L. G. (2005). Content-Based Image Re-

trieval Benchmarking: Utilizing Color Categories and Color Distributions. Journal of Imaging

Science and Technology, 49(3), 293–301.



8.1 Enhanced 11 bin color quantization

The organization of this chapter is as follows. We start with the introduction of the enhanced

11 bin color quantization in Section 8.1. In Section 8.2, the newly developed accompanying

similarity function for query-by-example is defined. Both the color space segmentation,

which resulted in a color quantization scheme for CBIR, and the new similarity function are

applied in a benchmark. The three CBIR systems used in the benchmark, the method of

research, the results and the discussion of the results can be found in Section 8.4.

8.1 Enhanced 11 bin color quantization

The 11 bin quantization of color space was originally developed for query-by-memory (see

Chapter 5). So, the user has to rely on his limited color memory when judging the retrieved

images. For the query-by-example paradigm, the drastic reduction of color information to

11 color categories (or bins) is coarse, as was shown in Chapter 5.

However, query-by-example is of importance for CBIR since it has two advantages

compared to query-by-memory: (i) It requires a minimal effort of the user and (ii) It is the

most wieldy paradigm since all possible features (color, texture, shape, and spatial informa-

tion) can be analyzed. In a query-by-memory the latter is hard and partially impossible. For

example, users experience it as difficult to sketch a shape [308] and are not capable of defin-

ing complex textures. Since query-by-example is such an important paradigm for CBIR, we

should aim to adopt the 11 bin quantization scheme to the query-by-example paradigm.

We will now explain that instead of adopting a more precise quantization scheme, the

notion of the 11 color categories should be preserved. However, a higher precision is needed

for the 11 bin quantization scheme.

In the previous chapter, the 166 bin quantization (18×3×3) of HSV color space was not

judged as performing significantly better in query-by-example than the 64 bin quantization

(4× 4× 4) of HSV color space. This despite the fact that the 166 bin quantization is 2.6 times

more precise than the 64 bin quantization. Hence, a more precise quantization scheme is not

a guarantee for success. In addition, in the same study the 11 bin color quantization per-

formed as well as the more precise, 64 and 166 bin quantizations. So, the 11 bin quantization

can be considered as an extremely efficient color quantization scheme.

The success of the 11 bin color quantization scheme can be explained by its origin: hu-

man color categorization, where the 64 and 166 bin quantization schemes naively segmented

each of the three axes of HSV color space into equal segments.

One way to extend the 11 color histogram would be to divide each color category in a

number of segments, for example, relative to the size of the area each category consumes in

the HSI color space. However, with such an approach only the number of pixels present in

a bin are taken into account; color variations within bins are ignored. Therefore, we chose to
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incorporate statistical information that describes the distribution of pixels within each bin.

Such an approach is only useful if a segment of color space represented by a bin is

perceptually intuitive for the users. The naive 64, 166, and 4096 bin quantizations as used

in previous chapter are not perceptually intuitive for users. For these quantization schemes,

the incorporation of statistical data would not make sense, since the sections in the color

space contain heterogeneous data (i.e., colors).

Since the statistical values can be precomputed and stored, these can be represented as

a vector of size n ∗ a where n is the number of bins and a is the number of statistical values

per bin. This representation is similar to the vector-representation of a histogram. Therefore,

each statistical value can be represented as a virtual bin. Therefore, such an approach is

relatively cheap compared to a more precise quantization.

In the next section, we will describe the within bin statistical information and how it is

used as a similarity measure.

8.2 Similarity function using within bin statistics

8.2.1 The intersection similarity measure

A distance measure calculates the distance between two histograms. A distance of zero

represents a perfect match. We use the histogram intersection distance (D) of Swain and

Ballard [287] between a query image(q) and a target image (t):

Dq,t =
M−1
∑

m=0

| hq(m) − ht(m) |, (8.1)

where M is the total number of bins, hq is the normalized query histogram, and ht is the

normalized target histogram.

When combining distance measures (by multiplying them), a single perfect match

would result in a perfect match for the total combination. However, this is an unwanted

situation since one would expect a perfect match if and only if all distance measures indi-

cate a perfect match. Therefore, the similarity (i.e., similarity = 1 - distance) for each variable

is calculated, instead of its distance.

In order to determine the intersection similarity (S) we adapt Equation 8.1 to give:

Sq,t =
M−1
∑

m=0

1− | hq(m) − ht(m) | . (8.2)
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8.2.2 Extension of the intersection measure

Based on Equation 8.2 a new distance measure is developed, incorporating statistical infor-

mation of each color category separately. In histogram matching only the magnitudes of the

bins are of importance (i.e., the number of pixels assigned to each bin). However, for our

new distance measure we will use five values next to the amount of pixels in the bins.

These values are stored in a color bucket b , assigned to every color category (or quan-

tized color space segment):



















































x1(b) = #(b) (i.e., the amount of pixels in bucket b;

the original histogram value h)

x2(b) = µH(b) (i.e., the mean hue H of bucket b)

x3(b) = µS(b) (i.e., the mean saturation S of bucket b)

x4(b) = σH(b) (i.e., the SD of the hue values H in bucket b)

x5(b) = σS(b) (i.e., the SD of the saturation values S in bucket b)

x6(b) = σI(b) (i.e., the SD of the intensity values I in bucket b),

where xi(b) denotes value i of color bucket b of either query image q: qi(b) or of target image

t: ti(b). SD is the abbreviation of Standard Deviation.

For each pair qi and ti (with i ε {1, 6}), of each bucket b the similarity Sqi,ti is determined,

as follows:

Sqi,ti(b) = 1− | qi(b) − ti(b) |, (8.3)

where the range of Sqi,ti is [0,1].

For the buckets representing the achromatic color categories, no values were calculated

for the hue and saturation axis. The achromatic color categories are situated in the central

rod of the HSI model. Hue values are represented by the angle around this rod (indicating

the basic color). Saturation values refer to the distance of a point to the central rod. The

larger the distance, the stronger the color information of a certain hue, is present.

Achromatic colors show very small values for saturation, regardless of their hue angle.

Therefore, when referring to achromatic categories, statistical information about the hue and

saturation axis does not contribute to the precision of the search algorithm and is, therefore,

ignored in the algorithm. To achieve the latter, by definition µH(b) = µS(b) = σH(b) =

σS(b) = 0 for buckets b representing achromatic colors. This results in Sq2,t2(b) = Sq3,t3(b) =

Sq4,t4(b) = Sq5,t5(b) = 1.

In addition, note that the mean values for the third axis of the HSI color-space, the in-

tensity axis, are not used for similarity calculation. With the exclusion of the mean intensity

for each bucket, the similarity measure is intensity invariant, which enables generalization

in matching. However, this advantage can, for example, become a disadvantage in a setting
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where solely color levels are compared.

Now that all values of a bucket are described, the total similarity for each color bucket

b (i.e., a quantized color category) can be defined as:

Sq,t(b) = Sq1,t1(b) · Sq2,t2(b) · Sq3,t3(b) · Sq4,t4(b) · Sq5,t5(b) · Sq6,t6(b) (8.4)

In addition to the statistical information, extra histogram information is used for de-

termining the similarity. For each color bucket b of the query image q a weight-factor Wq(b)

is calculated. The weight is proportional to the amount of pixels in a bucket. So, the most

dominant color category of the query image, having the most pixels, has the largest weight.

The reason to add such a weight is twofold. First, small buckets that represent a relative

small amount of pixels do not disturb the similarity calculation. Second, empty buckets do

not join the similarity calculation, because their weight is zero.

Wq(b) =
q1(b)

∑B−1
i=0 q1(i)

(8.5)

where B is the total number of color buckets. Further, please note that for a normalized

histogram, as is the case in the present research, Equation 8.5 can be rewritten as:

Wq(b) = q1(b). (8.6)

The total image similarity is then defined as:

Sq,t =
B−1
∑

b=0

Sq,t(b) · Wq(b). (8.7)

A technical advantage of this similarity measure, which is incorporated in the 11 bin

matching engine, is that it can be used or can be ignored when matching. The matching

performance in a query-by-example setting will benefit from the additional information.

For the query-by-memory paradigm the same engine can be used, but when preferred, the

statistical information can be excluded.

8.2.3 Computational complexity

Each statistical value can be regarded as a virtual bin. For all 11 bins the standard deviation

of the intensity (σI) is determined. In addition, for the 8 chromatic colors the mean hue

(µH), the mean saturation (µS), the standard deviation of the hue (σH), and the standard

deviation of the saturation (σS) are determined. So, for the enhanced 11 bin configuration a

total of 11 + 8 · 4 = 43 virtual bins are added. Hence, the computational complexity of the

enhanced 11 bin configuration is equal to that of a 11 + 43 = 54 bin histogram.
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8.3 Theoretical considerations:

From color concepts to color perception

The original feature vector, based on the 11 color categories, was originally developed for

the query-by-memory paradigm. With respect to the query-by-example paradigm, we de-

veloped an extended color feature vector, which contains statistical color values for each

color category. This approach has four major advantages:

1. A rich source of additional information (i.e., 43 color features) is available.

2. The human-centered color space segmentation is utilized.

3. The CBIR engine is still computationally inexpensive [136] (i.e., only 54 dimensions).

4. The additional information is based on color features that are natural for humans: hue,

saturation, and intensity [276].

One could argue, though, that the extended color vector approach cannot be merged with

a human-centered approach: Since the statistical values that represent the color features

are mathematical artifacts, they are not intuitive for humans. That this is not necessarily

the case, is (at least to a certain degree) illustrated by the forthcoming dialog, which is a

metaphor alluding the color matching process. Mr. Black and Mr. White are doing manual

color based image retrieval:

White: Hey, what about this picture? This picture has the same amount

of green as the query image.

Black: That’s right, but on average this green is a little bit more blue-ish

than the image we are looking for.

White: I’m afraid, you’re right. Also the red parts are in general more

pale, I guess.

Black: True, and moreover these orange parts have a range of different

tints. They do not appear in the original image.

White: Hmm, indeed... I think the image we had just before, fits the query

image better, doesn’t it?

Black: I totally agree. Let’s put it under that one, in our retrieval stack.

This dialog underlines that the natural components of the HSI color space [276] com-

bined with the statistical measures, match human capabilities with respect to describing

color features.

For optimal use of these extended features, we developed a new similarity measure

that combines multiple color features per color category. This way of similarity matching is

a top-down approach when the level of color feature abstraction is regarded. Let us discuss

Figure 8.1 (adopted from Gong [94]) to clarify this.
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Figure 8.1: An axis denoting the abstraction level of color features (adopted from Gong [94]).
Between parenthesis we added the query paradigms at the color abstraction level
that they require.

Gong [94] describes a color feature axis in which he discerns levels of color feature

abstraction. Three levels are made explicit: (i) color histograms, (ii) human color perception,

and (iii) human color concepts (i.e., categories). Level (i) refers to histogram based CBIR

techniques founded on arbitrary color space segmentation [287]. Human perception (level

(ii)) and human color concepts (level (iii)) are related to two query paradigms that are used

in CBIR, respectively query-by-example and query-by-memory.

Generally, CBIR research is approached bottom-up; many efforts are done to reach ab-

straction level (ii). Computational methods should reach that abstraction level, to ensure

optimal CBIR performance in a query-by-example environment. PicHunter [63] and Visu-

alSEEk [275] try to bridge the gap between level (i) and (ii) by using quantization methods

that are more close to human perception. Nevertheless, these approaches do not close the

color abstraction gap completely. More complex phenomena of human color perception,

like the invariance for changes in image illumination, are not represented by them. As Man-

dal et al. [175] stated, “current histogram techniques retrieve similar images acquired under

similar illumination levels.

As described in Chapter 5, we used human color categorization data to segment color

space. By using this segmented color space for CBIR purposes, we can retrieve images based

on color concepts. In other words, by segmenting color space into categories, we reached an

abstraction level that comes close to the level of color concepts. As a result, we are perfectly

able to fulfill the demands of the query-by-memory (QbM) paradigm by using histograms

that represent color categories. In that sense, we closed the (abstraction) gap between color

histograms and color concepts; see also Figure 8.1.

Next, we have expanded the CBIR query domain of our approach to the query-by-

example (QbE) paradigm by using a top-down strategy; i.e., from level (iii) to (ii) in Fig-

ure 8.1. Note that this is an unconventional way to address the abstraction level of hu-

man color perception. However, since the color concepts influence the human color percep-
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tion [318], correspondingly CBIR might take advantage from an analog top-down effect. In

this top-down approach, we could exploit the advantage of the coarse segmentation of color

space: The CBIR engine utilizes color categories, each covering a broad variety of color val-

ues. As a result, the image retrieval performance is robust with respect to various complex

perceptual issues (e.g., caused by changes in image illumination). Consequently, modeling

of these features is of less importance in the proposed top down approach.

In contrast to QbM where humans have to rely on their color memory, in a QbE envi-

ronment they can directly differentiate color values of query and target images (see Chapter

5). So, the QbE paradigm requires color descriptors that reveal subtle color differences be-

tween images. As discussed earlier, we added mean and standard deviation values of the

natural HSI color space, for each color category (also see Chapter 6). Matching of the mean

values indicates the distance of the average color value between images per color category.

Additionally, matching of the standard deviation of color values allows us to compare the

coherence of color values (per category) between images. Because of the natural charac-

ter of the HSI color space, these values can be perceived and discussed by humans, as was

illustrated in the dialog in the beginning of this section. The additional color features sup-

ply color information that is much more subtle than solely the quantitative information of

color categories. Hence, a downgrade effect toward the abstraction level of human color

perception is established.

As discussed above, we added values of the HSI color space, which represents axes

that are natural for humans. In the current implementation the impact on the similarity cal-

culation is equal for each value; they all have the same weight. Nevertheless, the values for

hue could get a greater magnitude since “hue represents the most significant characteris-

tic of the color.” [275] Possibly, this downgrade effect could be made even more strong by

changing the weight of some of these additional features.

As measuring illumination can be a pitfall with regard to CBIR for QbE purposes in

a bottom up approach, we avoided it by the exclusion of the mean intensity value (for

each color category). Hence, up to a high extent our CBIR approach remains insensitive

for changes in image illumination.

8.4 The CBIR benchmark

For the comparison of the three CBIR engines, a slightly modified version of the benchmark

presented in Section 11.6 of Chapter 7 was used. Again the Corel image database, consisting

of 60,000 images, served as our data-set. The engines to be tested are defined by two param-

eters: the color histogram of choice and the distance (or similarity) measure chosen. We will

now discuss the three CBIR engines tested, using these two parameters.
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8.4.1 Introduction: The 3 CBIR systems

For the first parameter, the color histogram database, two histogram configurations were

used (11 and 4096 bins), each having their own quantization method. For the histogram

configuration using 11 bins a quantization method was used based on the proposed seg-

mented HSI color space. The second histogram configuration is the QBIC configuration

using 4096 (16x16x16) bins [85, 193] determined in RGB color space. This computationally

heavy configuration is chosen because it performed best in the benchmark described in the

previous chapter.

For the second parameter, two histogram matching functions were used in our bench-

mark: (i) the histogram intersection distance [287] (see Equation 8.1) and (ii) the proposed

similarity function, which combines intersection similarity (see Equation 8.2) and statistical

information (see Section 8.2). We have used the intersection distance measure because it

was judged as performing better than the quadratic distance for all histogram configura-

tions [30].

The proposed similarity function was only applied on the 11 bin configuration. So, in

total three engines (i.e., combinations of color quantization schemes and distance measures)

are compared in the benchmark: i) the 4096 bin configuration, ii) the 11 bin configuration,

iii) the enhanced 11 bin configuration, using the similarity function.

Table 8.1: The three engines incorporated in the CBIR-
benchmark, defined by their color quantization
scheme (i.e., 11 or 4096 bins) and the distance measure
applied; i.e., the intersection distance (ID) or the
extended (or enhanced) intersection distance (IDe).

11 bins 4096 bins
Intersection distance ID − 11 ID-4096
Extended intersection distance IDe − 11

8.4.2 Method

For each of the three engines, 30 query results had to be judged by human subjects, making

a total of 90 per participant. They were unaware of the fact that three distinct engines were

used to retrieve the images. Each set of 90 queries was fully randomized, to control for influ-

ence of order. Normally such retrieval results are presented in their ranked order. However,

if this would have been the case in the benchmark, the participants would be biased to the

first retrieval results after a few queries. Therefore, the ranking of the retrieved images is

presented in random order.

Each query resulted in 15 retrieved images, presented in a 5×3 matrix. On the left side

of this matrix the query image was shown (see Figure 8.2).
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Figure 8.2: The interface of a query as was presented to the participants. They were asked to
select the best matching images and to rate their overall satisfaction, with respect
to their color distribution only. See Figure B.7 in Appendix B for a large full color
print of this screendump.

The participants were asked to judge the retrieved images solely based on the color

distribution hereby ignoring the spatial distribution of the colors. It was emphasized that

semantics, shape, etc. should not influence their judgment. The participants were asked to

perform two tasks. On the one hand they were asked to mark the images that they judged

as relevant. On the other hand, they were asked to indicate their overall satisfaction with

the retrieved results on a scale from 1 to 10 (see Figure 8.2). The complete instructions can

be found on http://eidetic.ai.ru.nl/CBIR-benchmark.html.

51 participants, both males and females in the age of 20-60, finished the benchmark;

11 did start with the benchmark but did not finish it. The data of this second group of

participants was not taken into account for analysis.

Regrettably, six of the 51 participants did not complete the benchmark as instructed.

Five of these six participants did not select any of the retrieved images. One of the six

participants consistently selected one image for each of the 90 query results. Therefore,

these six participants were not taken into account for the analysis. Hence, in total we did

collect usable data of 45 participants, making a total of 4050 queries that were judged.

We recorded for each query of each participant: the image ID, the query number, the

number of bins used, whether or not the within bin statistics were used, the selected satis-

faction rate, and which and how many images the participant judged as relevant.

97

http://eidetic.ai.ru.nl/CBIR-benchmark.html
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Both the number of selected images and the rating for each query were normalized per

participant. The normalized values were used for the analysis. How this normalization was

done is defined in the Section 7.2.5 of the previous chapter.

8.4.3 Results

Two dependent variables resulted from the experiments: the number of images selected by

the participants as acceptable and the overall rating given by the participants. Both mea-

sures were analyzed. The aim of the first phase of analysis was to determine whether a

difference was present between the three engines. Therefore, for each measure a one-way

ANOVA was applied. A strong and highly significant general difference was found be-

tween the engines for both the number of selected images (F(2,4047)=60.29; p<.001) and for

the overall rating provided by the participants (F(2,4047)=97.60; p<.001).

A Duncan post hoc test on the number of selected images, revealed two homogeneous

subsets within the group of three engines. According to the number of selected images, the

ID−11 and IDe−11 engines did not differ. Yet, this finding was not confirmed by the values

on overall rating of the retrieval performance. A complete description of the statistical data

can be found in Table 8.2.

Based on the latter result we conducted an additional analysis. Six additional ANOVAs

were applied: each of the three engines was compared with the two others for both mea-

sures. According to the overall rating the within bin statistics had improved the performance

of the ID − 11 engine (F(1,2698)=15.15; p<.001). In contrast, on the number of selected im-

ages a non-significant (F(1,2698)=3.00; p<.084) was found. The complete results of the six

ANOVAs can be found in Table 8.3.

Further, we were interested in the variability between participants. To determine a

general effect of variability between participants, we applied a Multivariate ANOVA, which

revealed, for both measures, a strong variability between participants (number of selected

images: F(1,4046)=10.23; p<.001 and rating: F(1,4046)=6.61; p<.010).

Table 8.2: Descriptive statistics of the benchmark. Each engine is defined by its color quanti-
zation scheme (#bins) and whether or not statistical data on bin level (stats.) was
taken into account. In addition, the number of queries (#queries) performed by
each engine is mentioned. For the number of selected images (#images selected)
as well as for the overall rating the mean (µ) value, the standard deviation (σ), and
the confidence interval (min, max) at 99% is provided, for each engine.

engine #queries µ σ (min, max) µ σ (min, max)
ID − 11 1350 3.67 3.51 3.42–3.93 4.76 2.29 4.60–4.92
IDe − 11 1350 3.91 3.48 3.65–4.17 5.10 2.28 4.94–5.26
ID−4096 1350 5.13 4.06 4.87–5.39 5.96 2.36 5.80–6.12
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Table 8.3: Strength and significance of the difference found between the 11 bin, the enhanced
11 bin (including within bin statistical information: + stats.), and the 4096 bin
engine, on both the number of selected images and the overall rating.

engine 1 engine 2 #images selected rating
ID − 11 IDe − 11 F(1,2698)= 3.00 (p<.084) F(1,2698)= 15.15 (p<.001)
ID − 11 ID−4096 F(1,2698)= 99.02 (p<.001) F(1,2698)=181.23 (p<.001)
IDe − 11 ID−4096 F(1,2698)= 70.27 (p<.001) F(1,2698)= 93.44 (p<.001)

Table 8.4: Strength and significance of the variability between participants for the 11 bin, the
enhanced 11 bin (including within bin statistical information: + stats.), and the
4096 bin engine, on both the number of selected images and the overall rating.

engine #images selected rating
ID − 11 F(1,1348)= 7.00 (p<.008) F(1,1348)= 3.31 (p<.069)
IDe − 11 F(1,1348)= 5.83 (p<.016) F(1,1348)= 2.42 (p<.120)
ID−4096 F(1,1348)= 0.47 (p<.493) F(1,1348)= 1.19 (p<.276)

Three Multivariate ANOVAs were done to determine for each of the three engines, how

much participants differ in their scores. A complete overview of the variability between the

participants for each of the three engines is provided in Table 8.4.

8.4.4 Discussion

A large amount of data was collected through the benchmark, which is permanently avail-

able for participants at http://eidetic.ai.ru.nl/CBIR-benchmark.html. The re-

sults of this research comprise 4050 queries that were judged by 45 participants. Two mea-

sures were used: the number of selected images and the overall rating, indicating the satis-

faction of the participant.

Without being told, the participants judged three distinct engines. Each engine can

be defined by a combination of a color quantization measure and a distance measure. Two

engines used the 11 bin quantization of color space introduced in Chapter 5 and the third

one used the 4096 bin quantization of color space, adopted from IBM’s QBIC [102, 274]. The

latter was judged as performing best in the previous chapter. The 4096 bin quantization and

one of the 11 bin quantizations, which we call the ID−11 engine, employed the intersection

distance measure. The other 11 bin quantization was equipped with a newly developed

similarity function, based on within bin statistical information, which we therefore name

the IDe − 11 engine.

The original feature vector, based on the 11 color categories, was originally developed

for the query-by-memory paradigm, as discussed in Section 7.1.1 of Chapter 7. With respect

to the query-by-example paradigm, we developed an extended color feature vector, which
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contains statistical color values for each color category and has four major advantages:

1. A rich source of additional information is available; i.e., an additional 43 color features.

2. The human-centered color space segmentation is utilized.

3. The CBIR engine is still computationally inexpensive [136]; i.e., only 54 dimensions.

4. The additional information is based on color features that are intuitive for humans:

hue, saturation, and intensity [95, 276].

However, one could argue that the extended color vector approach can not be merged with

a human centered approach: Since the statistical values are mathematical artifacts, which

are not intuitive for humans. This is not necessarily the case, as illustrated in Section 8.3: the

natural components of the HSI color space combined with the statistical measures, match

human capabilities with respect to describing color features. [146]

The enhancement/extension of the 11 bin color quantization scheme combined with

the new similarity measure improved the performance significantly compared to the stan-

dard 11 of bin color quantization scheme combined with the intersection measure. However,

the 4096 bin engine performed best, according to the participants.

The advantage of the standard 11 bin approach in combination with the new similarity

measure, is its low computational complexity, where it outperforms the 4096 bin histogram

by far. Taking in consideration that the latter is of extreme importance [136] for the us-

age of CBIR systems, the results were very promising. However, it should be noted that a

strong variability between the participants was found for all three engines, with respect to

the number of images they selected (see Table 8.4). In contrast, the overall rating did not

show a significant variability between the participants for any of the engines. So, a strong

discrepancy was present between both measures, with respect to the variability between

participants.

The participants reported that judging whether a retrieved image should be considered

as relevant, is a particularly difficult process. This was mainly due to the fact that they

were asked to judge the images based solely on their color distribution and to ignore their

semantic content. Therefore, we have strong doubts concerning the reliability of the number

of selected images as a dependent variable. The overall rating should be considered as the

only reliable variable. For a benchmark such as ours, the number of selected images should,

therefore, not be included in future research nor in further analysis of the current research.

With this second benchmark, we end our evaluations directed to image retrieval based

on global color distributions. In the next chapters, a new line of research is explored. It

continues the work discussed in this and the previous chapters. Again, the color space

segmentation, as introduced in Chapter 5 will be utilized. However, in this third line of

research another important feature used by CBIR engines will be explored: Texture.
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Abstract

In the first part of this chapter, the concept texture is introduced and the difficulty of defining

texture is illustrated. Next, a short description of the two approaches to texture analysis is

given, followed by the introduction of a new, efficient algorithm for the calculation of the co-

occurrence matrix, a gray-scale texture analysis method. The co-occurrence matrix is extended

to color with the introduction of the color correlogram. Last, some applications of texture

analysis are described and the classifiers used in this thesis to perform texture classification

are introduced. In the second part of this chapter, first, a gray-scale study is done to determine

the optimal configuration for the co-occurrence matrix on a texture classification task. Second,

the co-occurrence matrix and the color correlogram were both used for the analysis of colorful

texture images. The use of color improved the classification performance. In addition was

found that coarse quantization schemes are more successful than more precise quantization

schemes.

This chapter is partly based on:

Broek, E. L. van den and Rikxoort, E. M. van (2004). Evaluation of color representation for

texture analysis. In R. Verbrugge, L.R.B. Schomaker, and N. Taatgen (Eds.), Proceedings of the

Belgian Dutch Artificial Intelligence Conference (BNAIC) 2004, p. 35-42. October 21-22, Gronin-

gen - The Netherlands.



9.1 Texture defined

Texture is an intuitive concept that describes properties like smoothness, coarseness, and

regularity of a region [95]. Texture is an important element to human vision, it provides

cues to scene depth and surface orientation.

In the next sections, Intensity-based texture will be described, which has been the topic

of investigation for many years and has proven useful. For example, the black and white

television proves the usability of Intensity-based texture: people are able to see 3D in a

2D black and white screen. So, it seems important to look at Intensity-based textures be-

fore looking at colorful textures because the techniques used by Intensity-based textures can

probably be expanded to color-texture.

9.1 Texture defined

This section provides an overview of the definitions of texture that have been proposed in

the literature over the years. It is adopted from the web page of MeasTex [272] and after that

extended.

Even though texture is an accepted intuitive concept, a formal definition of texture

seems elusive. In 1973, Haralick, Shanmugam, and Dinstein [106] noted (p611): ”texture

has been extremely refractory to precise definition”. Over the years, many researchers have ex-

pressed this sentiment: Cross and Jain [64] (p.25): ”There is no universally accepted definition for

texture.”, Bovik, Clarke, and Geisler [22] (p.55): ”an exact definition of texture either as a surface

property or as an image property has never been adequately formulated.”, and Jain and Karu [127]

(p.195): ”Texture [eludes] a formal definition”. Standard works confirm this. Gonzales and

Woods [95] (p.665) state:“No formal definition of texture exists, intuitively this descriptor provides

measures of properties such as smoothness, coarseness and regularity.” and Ballard and Brown [8]

write: “ The notion of texture admits no rigid description, but a dictionary definition of texture as

’ something composed of closely interwoven elements’ is fairly apt.” The latter statement is con-

firmed by Merriam-Webster dictionary [181] which provides five definitions of texture, of

which four are applicable for us:

1. a: “something composed of closely interwoven elements; specifically: a woven cloth” b: “the

structure formed by the threads of a fabric”

2. a: “essential part: substance” b: “identifying quality: character”

3. a: “the disposition or manner of union of the particles of a body or substance” b: “the visual or

tactile surface characteristics and appearance of something, the texture of an oil painting ”

4. a: “basic scheme or structure” b: “overall structure”

Despite the lack of a universally agreed definition, all researchers agree on two points.

Firstly, there is significant variation in intensity levels between nearby pixels; that is, at the

103
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limit of resolution, there is non-homogeneity. Secondly, texture is a homogeneous property

at some spatial scale larger than the resolution of the image.

Some researchers describe texture in terms of human visual perception: that textures

do not have uniform intensity, but are none-the-less perceived as homogeneous regions by

a human observer. For example, Bovik, Clarke, and Geisler [22] (p.55) write: “an image

texture may be defined as a local arrangement of image irradiances projected from a surface patch of

perceptually homogeneous irradiances”. Also, Chaudhuri, Sarkar, and Kundu [52](p.233) write:

“Texture regions give different interpretations at different distances and at different degrees of visual

attention. At a standard distance with normal attention, it gives the notion of macro-regularity that

is characteristic of the particular texture. When viewed closely and attentively, homogeneous regions

and edges, sometimes constituting texels, are noticeable.” However, a definition based on human

acuity poses problems when used as the theoretical basis for a quantitative texture analysis

algorithm. Faugeras and Pratt [83](p.323) note: “The basic pattern and repetition frequency of a

texture sample could be perceptually invisible, although quantitatively present.”

9.2 Texture Analysis

There are two widely used approaches to describe the texture of a region, these are statistical

and structural. The statistical approach considers that the intensities are generated by a

two-dimensional random field. The methods used are based on spatial frequencies and

yield characterizations of textures as smooth, coarse, grainy, etcetera. Examples of statistical

approaches to texture analysis are autocorrelation function, gray-level co-occurrence matrix,

Fourier texture analysis, edge frequency, and Law’s texture energy measures [257, 279].

The structural techniques deal with the arrangement of image primitives, such as the

description of texture based on regularly spaced, parallel lines [279]. In our research, the

co-occurrence matrix was used to perform texture analysis because it is an important gray-

scale texture analysis method [95, 106]. As Palm [205] states: ‘several studies favor the

co-occurrence matrices in the gray-scale domain’. In addition, Sharma, Markou, and Singh

[257] performed a comparative study using five texture analysis methods and found the

co-occurrence matrix outperformed the other methods.

9.3 The co-occurrence matrix

The co-occurrence matrix is constructed from an image by estimating the pairwise statistics

of pixel intensity. In order to (i) provide perceptual intuitive results and (ii) tackle the com-

putational burden, intensity was quantized into an arbitrary number of clusters of intensity

values, which we will name: gray values.

104



9.4 Colorful texture

The co-occurrence matrix Cd̄(i, j) counts the co-occurrence of pixels with gray

values i and j at a given distance d̄. The distance d̄ is defined in polar coordi-

nates (d, α), with discrete length and orientation. In practice, α takes the values

0◦, 45◦, 90◦, 135◦, 180◦, 225◦, 270◦, and 315◦. The co-occurrence matrix Cd̄(i, j) can now be de-

fined as follows:

Cd̄(i, j) = Pr(I(p1) = i ∧ I(p2) = j | |p1 − p2| = d̄), (9.1)

where Pr is probability, and p1 and p2 are positions in the gray-scale image I.

The algorithm yields a symmetric matrix, which has the advantage that only angles up

to 180◦ need to be considered. A single co-occurrence matrix can be defined for each distance

(d̄) by averaging four co-occurrence matrices of different angles (i.e., 0◦, 45◦, 90◦, and 135◦).

Let N be the number of gray-values in the image, then the dimension of the co-

occurrence matrix Cd̄(i, j) will be N × N . So, the computational complexity of the co-

occurrence matrix depends quadratically on the number of gray-scales used for quantiza-

tion.

Because of the high dimensionality of the matrix, the individual elements of the co-

occurrence matrix are rarely used directly for texture analysis. Instead, a large number

of textural features can be derived from the matrix, such as: energy, entropy, correlation,

inverse difference moment, inertia, Haralick’s correlation [106], cluster shade, and cluster

prominence [60]. These features characterize the content of the image.

Note that in order to apply the co-occurrence matrix on color images, these images

have to be converted to gray-value images. This conversion is described in Section 2.3, for

several color spaces.

9.4 Colorful texture

For gray-scale image analysis multiple are algorithms available, for color images this is not

yet the case. However, new algorithms for color texture analysis are increasingly explored as

color analysis becomes feasible [267]. One of the approaches that has been proposed several

times is the so called color correlogram [118, 119, 267]. The color correlogram is an extension

of the co-occurrence matrix to color images and was first proposed by Huang et al. [118].

Huang et al. [118, 119] used the color correlogram as a feature for image indexing

and supervised learning. They found that the color correlogram performed better than well

known methods like the color histogram. Therefore, in this research the color correlogram

is used as a color texture descriptor.

The color correlogram is the colorful equivalent of the co-occurrence matrix. The color

correlogram Cd̄(i, j) counts the co-occurrence of colors i and j at a given distance d̄. So,
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for the color correlogram, not the intensity is quantized, but a color space is quantized. In

Equation 9.1, i and j denote two gray-values. Subsequently, the color correlogram can be

defined by Equation 9.1, with i and j being two color values.

9.5 Using texture

Texture analysis can be used for many applications. There are six categories of utilizations of

texture analysis, these are texture segmentation, texture classification, texture synthesis, 2D

and 3D shape extraction from texture, and motion-from-texture [299]. A brief description of

these different utilizations is given below.

1. Texture segmentation is the problem of trying to find different textures in one image.

This is a difficult problem because usually one does not know how many different

textures there are in an image, and what kind of textures, etc. But this knowledge is

not necessary if there is a way to tell that two textures are different.

2. Texture classification involves deciding in which texture category a given texture be-

longs. In order to do this, the different texture categories need to be known; e.g., rock,

grass, fabric, clouds. Pattern recognition classifiers, like neural networks or Bayesian

classifiers, can be used to classify the textures.

3. Texture synthesis is the problem of synthesizing a new texture, from a given texture,

that, when perceived by a human observer, appears to be generated by the same un-

derlying stochastic process. Texture synthesis can, for example, be used for image

de-noising and image compression.

4. 2D shape extraction from texture can be applied next to texture segmentation. Based

on local differences in color/intensity and texture shapes can be extracted from images.

5. 3D shape extraction from texture. Various visual cues are used by humans to recover

3D information from 2D images. One such cue is the distortion of textures due to

the projection of the 3D world onto a 2D image plane. This distortion can be used to

recover shape from texture.

6. Motion-from-texture is the least frequently used application of texture. However,

Werkhoven, Sperling, and Chubb [314] showed that drifting spatiotemporal modu-

lations of texture can induce vivid motion percepts.

In this study, texture will be used for the first three utilizations: segmentation, shape extrac-

tion, and classification.
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9.6 Three classifiers

The classification of texture can be done with different classifiers. Based on initial pilot

experiments, in which different classifiers were compared, three classifiers were chosen:

1. The statistic classifier is based on discriminant analysis with linear discriminant func-

tion yk that decides on class membership. An input vector x is assigned to a class Ck if

yk(x) > yj(x), for all j 6= k.

2. The probabilistic neural network approximates the probability density function of

the training examples presented. It consists of three layers after the input layer: the

pattern layer, the summation layer, and the output layer. The outcome is a classifica-

tion decision in binary form.

3. The K-nearest neighbor classifier works with the following algorithm: suppose the

data set contains Nk data points in class Ck and N points in total, so that
∑

k Nk = N .

The classifier then works by drawing a hypersphere around the point to classify, x,

which encompasses K points. To minimize the probability of misclassifying x, x is

assigned to the class Ck for which the ratio Kk

K
is largest, where Kk is the number of

points from class Ck.

They were combined using the technique of majority voting [147]: when at least two of the

three classifiers agree on the class label of a sample texture, this label is given else the label

reject is given. An explanation for the choice to use them separately or to combine them is

provided in the chapters where the classifiers are applied. The same holds for the parameter

settings.

9.7 The exploratory gray-level study

A pilot study was done to explore the possibilities of the gray-level co-occurrence matrix as

described in Section 9.3. In this study, a classification task on the MeasTex gray-scale texture

database [272] is performed to determine the optimal set of textural features to be derived

from the co-occurrence matrix (see Section 9.3). This is needed since no consensus is present

in literature on which feature (combination) describes texture best. In addition, an attempt

is made to describe what these features represent for humans.
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9.7.1 The features

As described in Section 9.3, features can be extracted from the co-occurrence matrix

to reduce feature space dimensionality and so, reduce the computational complexity.

Figures 9.1a–9.1d visualize the relation between the features energy and entropy and

between inertia (or contrast) and Inverse Difference Moment (IDM). In the next section, a

textual description is provided of each of these features. This section provides the formal

definitions of eight features from the co-occurrence matrix.

Energy =
∑

i,j

C(i, j)2

Entropy = −∑

i,j

C(i, j)logC(i, j)

Inverse Difference Moment =
∑

i,j

1
1+(i−j)2

C(i, j)

Inertia (or contrast) =
∑

i,j

(i − j)2
C(i, j)

Cluster Shade =
∑

i,j

((i − µi) + (j − µj))
3
C(i, j)

Cluster Prominence =
∑

i,j

((i − µi) + (j − µj))
4
C(i, j)

Correlation =
∑

i,j

(i−µi)(j−µj)C(i,j)

σiσj

Haralick′s correlation =

∑

i,j

(ij)C(i,j)−µxµy

σxσy

(9.2)

Notation

C(i, j) the (i, j)th entry in a co-occurrence matrix C
∑

i

defined as:
i=M
∑

i=1

where M is the number of rows.

∑

j

defined as:
j=N
∑

j=1

where N is the number of columns.

∑

i,j

means
∑

i

∑

j

µi defined as: µi =
∑

i

i

∑

j

C(i, j)

µj defined as: µj =
∑

j

j

∑

i

C(i, j)

σi defined as: σi =
∑

i

(i − µi)
2
∑

j

C(i, j)

σj defined as: σj =
∑

j

(j − µj)
2
∑

i

C(i, j)

µx, µy the mean of row and column sums respectively.

σx, σy the standard deviation of row and column sums respectively.
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Figure 9.1: The relation between energy an7 entropy: (a) energy low and entropy high and
(b) energy high and entropy low. The relation between inertia (or contrast) and
Inverse Difference Moment (IDM): (c) inertia low and IDM high and (d) inertia
high and IDM low.

109



9 Texture representations

9.7.2 The features describing texture

In the latter section, the formal definitions of eight features were given. In the current sec-

tion, the intuitive descriptions of these definitions, are given.

Energy: describes the uniformity of the texture. In a homogeneous image, there are very

few dominant gray-tone transitions, hence the co-occurrence matrix of this image will

have fewer entries of large magnitude. So, the energy of an image is high when the

image is homogeneous.

Entropy: measures the randomness of the elements in the matrix, when all elements of the

matrix are maximally random, entropy has its highest value. So, a homogeneous image

has a lower entropy than an inhomogeneous image. In fact, when energy gets higher,

entropy should get lower.

Inverse difference moment: has a relatively high value when the high values of the matrix

are near the main diagonal. This is because the squared difference (i − j)2 is smaller

near the main diagonal, which increases the value of 1
1+(i−j)2

.

Inertia (or contrast): gives the opposite effect compared to the inverse difference moment,

when the high values of the matrix are further away from the main diagonal, the value

of inertia (or contrast) becomes higher. So, inertia and the inverse difference moment

are measures for the distribution of gray-scales in the image. Also, when inertia is

high, there will be small regions in the texture with the same gray-scale, for inverse

difference moment, the opposite is true.

Cluster shade and Cluster prominence: are measures of the skewness of the matrix, in

other words the lack of symmetry. When cluster shade and cluster prominence are

high, the image is not symmetric. In addition, when cluster prominence is low, there is

a peak in the co-occurrence matrix around the mean values, for the image this means

that there is little variation in gray-scales.

Correlation: measures the correlation between the elements of the matrix. When correlation

is high the image will be more complex than when correlation is low.

Haralick’s correlation: is a measure of gray level linear dependence between the pixels at

the specified positions relative to each other. Compared to normal correlation, Haral-

ick’s correlation reacts stronger to the complexity of an image.

9.7.3 The implementation of the co-occurrence matrix

A new, efficient algorithm for calculating the co-occurrence matrix is developed. A straight-

forward way to calculate the co-occurrence matrix would be to consider each pixel pi of gray-

level i and count all pj of gray-level j at an arbitrary distance d̄ = (d, α), with |pi − pj| = d̄,
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9.7 The exploratory gray-level study

for all possible i and j. This would take O(nmb[d̄]) to compute, where n × m denote the

image size, b is the number of gray levels distinguished, and [d̄] is the number of distances

used, in our case four.

Our algorithm makes use of the definition of the co-occurrence matrix, instead of con-

sidering each gray-scale sequentially; it counts the co-occurrence of pixels with gray-values

i and j at distance d̄. The image is only scanned once, where the straightforward algorithm

goes through the image b[d̄] times. For each pixel in the image, the pixels at the four distances

d̄ are considered. This is directly stored in the co-occurrence matrix in one iteration.

Let I denote a gray-scale image and (δiα, δjα) be the displacement vector in the image

(I) to obtain the pixel at distance d̄ = (1, α) from pixel I[i][j]. Let C be the co-occurrence

matrix for all four angels (i.e., 0◦, 45◦, 90◦, and 135◦) as described in Equation 9.1, which is

initialized by setting all entrances to zero. Then, our algorithm is as follows:

for (i = 0; i< image width; i++)

for(j=0; j< image height; j++)

foreach α ∈ {0◦, 45◦, 90◦, and 135◦}
C [I[i][j]] [I[i + δiα ][j + δjα ]] + = 1;

This algorithm takes O(nm) time to compute.

9.7.4 Design

The co-occurrence matrix and the eight features were implemented as defined in Equa-

tion 9.1 and Equation 9.2. The intensity values were quantized in 64 bins using the RGB

color space. The co-occurrence matrix was only calculated with distance 1, this is a common

thing to do [106, 118]. As a database, the MeasTex gray-scale texture database [272] was

used.

The MeasTex texture database is divided into five groups: asphalt, concrete, grass,

misc, and rock. For this pilot study, only the groups concrete (12 images), grass (18 images),

and rock (25 images) are used because the groups asphalt (4 images) and misc (9 images) are

too small. The images have a size of 512 × 512 pixels.

In order to determine the optimal set of features for the co-occurrence matrix, a clas-

sification task was performed using a statistic classifier, as described in Section 9.6. Clas-

sification was applied using different combinations of the features. The classifier used is

the discriminant analysis classifier from the statistic toolbox in Matlab, this classifier is used

because it is thoroughly tested and has a good reputation.
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Figure 9.2: (a) A texture image from which a co-occurrence matrix and features are calcu-
lated. (b) The visual rendering of the co-occurrence matrix of image (a). See
Figure B.5 in Appendix B for color versions of these images.

9.7.5 Results

To illustrate the texture analysis, in Figure 9.2 a visual rendering of the co-occurrence matrix

of an image in the MeasTex database is given. In Table 9.1, the features for this image are

given.

The classification task was performed by the linear discriminant analysis classifier, us-

ing all 255 (i.e., 28 − 1 combinations) possible combinations of features. Four of the eight

features used are found to be the strongest describers of texture. These are entropy, inverse

difference moment, cluster prominence, and Haralick’s correlation. When these features

were used, 100% of the data was classified correct. When all the features were used, only

Table 9.1: The textural features derived from the image in Figure 9.2.
Textural features Angle

0◦ 45◦ 90◦ 135◦ average

Inertia (or contrast) 6.03 7.89 4.41 9.17 6.88
Energy 0.01 0.01 0.01 0.01 0.01
Entropy 4.71 4.83 4.58 4.88 4.75
Inverse Difference Moment 0.40 0.38 0.48 0.35 0.40
Cluster Shade 0.77 0.77 0.77 0.76 0.77
Cluster Prominence 0.70 0.70 0.70 0.70 0.70
Correlation 0.83 0.83 0.83 0.83 0.83
Haralick’s Correlation 0.72 0.64 0.80 0.58 0.68
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9.8 Exploring colorful texture

66% of the data classified correct. There is no risk of overfitting because a linear discriminant

function was used to classify the data. A complete description of the results can be found in

Van Rikxoort and Van den Broek [223].

9.7.6 Conclusion

The entropy, inverse difference moment, cluster prominence, and Haralick’s correlation

were found to be good descriptors of gray-scale texture. In addition, an efficient way of

implementing the co-occurrence matrix is presented. Now, it is interesting to look at color-

ful textures, using the color correlogram.

Huang et al. [118, 119] used the color correlogram in a whole as a feature. Like the co-

occurrence matrix, this is a very high dimensional feature. Hence, it is desirable to reduce

the dimension. Extracting features from the color correlogram is a method of reducing this

dimension [205]. The features used for the gray-level co-occurrence matrix can be expanded

to deal with the color correlogram [267]. Alternatively, color images can be read and con-

verted to gray-scale images before calculating the features. This conversion can, using the

RGB color space, be made by the following formula [89]:

I =
R + G + B

3
, (9.3)

where I denotes Intensity or gray-value. The conversion from color to gray-scale for other

color spaces is given in Section 2.3.

When analyzing colorful texture, the color space used will be quantized. However,

it is not known how many different colors exactly influence the appearance of a texture to

humans. There has been some research that suggests that only a few different colors are

important to human color perception [16, 75, 219].

Finally, it seems a good idea to test the effect of using different color spaces for rep-

resenting colorful texture. Sing et al. [267] used 11 different color spaces and found that

all gave good results for texture analysis. However, there were very different classification

performances observed, using the same texture features and the same experimental data,

depending on which color space was used.

9.8 Exploring colorful texture

In this study, the color correlogram and co-occurrence matrix are used for the same colorful

texture classification task. Hence, the performance of the color-correlogram is compared to

the co-occurrence matrix. Huang et al. [119] quantized the image in 64 different colors using

the RGB color space. In the current research, a number of different quantizations were used.
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They were initially compared using the RGB color space. In the next chapter, other color

spaces are considered too.

9.8.1 Design

To implement the color correlogram, the efficient implementation of the co-occurrence ma-

trix (Section 9.7.3) was used. Huang et al. [118] propose another algorithm to implement the

color correlogram efficiently. Their algorithm also takes O(mn) (where m × n are the image

geometries) time to compute. Although the algorithm proposed by Huang et al. is equally

efficient to the algorithm as introduced in Section 9.7.3, the latter is preferred because it is

more intuitive.

In this study, the performance of the co-occurrence matrix on colorful textures is com-

pared to the performance of the color correlogram. In order to apply the co-occurrence

matrix on the colorful textures, the textures are converted to gray-scale using the RGB color

space, as described in Section 9.7.6.

For both the co-occurrence matrix and the color correlogram, the four features per-

forming best in the gray-scale pilot study are extracted. As a database, the VisTex colorful

texture database [178] is used. The VisTex database consists of 19 labeled classes, the classes

that contain less than 10 images were not used in this study, which results in four classes:

bark (13 images), food (12 images), fabric (20 images), and leaves (17 images).

A classification task is performed, using the three classifiers described in Section 9.6.

The training and test-set for the classifiers are determined using random picking, with the

prerequisite that each class had an equal amount of training data. As a statistic classifier,

the statistic classifier from the Matlab “statistic toolbox” is used. The Probabilistic neural

network used in this study is implemented in the “neural network toolbox” from Matlab.

The K-nearest neighbor classifier is obtained from the Matlab Central File Exchange [292].

There is an optimum for the value of K specific for each dataset. For this study, a value of

K = 2 is chosen because of the small number of images.

9.8.2 Results

In Table 9.2 and 9.3, for both the co-occurrence matrix and the color correlogram, the per-

centages of correct classification are given for each of the three classifiers and for their com-

bination. The classifiers were combined using the technique of majority voting, as described

in Section 9.6. Combining the classifiers provides better results than using either of the clas-

sifiers separately. The results indicate that the quantization scheme used is important for

texture analysis. The color correlogram performs better than the co-occurrence matrix when

a coarse quantization is used.
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Table 9.2: The percentages of correct classification for each classi-
fier and their combination, for the co-occurrence matrix.

# Gray levels Statistic PNN Knn Combined
8 44% 66% 66% 66%

16 44% 66% 66% 66%
32 55% 55% 55% 55%
64 66% 44% 55% 55%

128 66% 55% 44% 66%

Table 9.3: The percentages of correct classification for each classi-
fier and their combination, for the color correlogram.

# Levels of color Statistic PNN Knn Combined
8 55% 77% 55% 77%

64 55% 77% 77% 77%
256 55% 55% 55% 55%
512 55% 44% 44% 44%

1024 66% 33% 44% 44%

9.8.3 Discussion

The color correlogram was compared to the co-occurrence matrix, using several quantiza-

tion schemes on the RGB color space. The color correlogram performed better than the

co-occurrence matrix. This can be explained by the fact that no differentiation is possible

between two colors with an equal intensity. Hence, the color of a texture is important for its

classification, which is confirmed by Palm [205].

For both the color correlogram and the co-occurrence matrix, the best classification

results are obtained using coarse quantization schemes. This is consistent with the concept

of 11 color categories, as discussed in Chapters 2-8. The images in the VisTex image database

are classified by humans, so it is plausible that they are classified using those color categories

or at least into a limited number of color categories. In addition, coarse color quantizations

are computationally cheap. This, in contrast with the quantization schemes proposed by

Mäenpää and Pietikäinen [172], who used quantization schemes with up to 32768 color bins.

When the classifiers are combined, the results are better than when the three different

classifiers are used separately. This agrees with the results found by Schiele that using mul-

tiple classifiers increases classification performance [243]. Therefore, in the remainder of this

thesis, only the classification results of the classifier combination are given.

In the next chapter, we will continue our exploration of color-based texture analysis.

Several color spaces, quantization schemes, and texture analysis techniques are explored.

Moreover, a new method for combining color analysis and texture analysis is introduced.
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Abstract

In this chapter, color induced texture analysis is explored, using two texture analysis tech-

niques: the co-occurrence matrix and the color correlogram as well as color histograms. Sev-

eral quantization schemes for six color spaces and the human-based 11 color quantization

scheme have been applied. The VisTex texture database was used as test bed. A new color in-

duced texture analysis approach is introduced: the parallel-sequential approach; i.e., the color

correlogram combined with the color histogram. This new approach was found to be highly

successful (up to 96% correct classification). Moreover, the 11 color quantization scheme per-

formed excellent (94% correct classification) and should, therefore, be incorporated for real-

time image analysis. In general, the results emphasize the importance of the use of color for

texture analysis and of color as global image feature. Moreover, it illustrates the complemen-

tary character of both features.

This chapter is almost identical to:

E. L. van den Broek and E. M. van Rikxoort. Parallel-Sequential Texture Analysis, Lecture Notes

in Computer Science (Advances in Pattern Recognition), 3687, 532–541.



10.1 Introduction

10.1 Introduction

There is more with colors than one would think at a first glance. The influence of color in

our everyday life and the ease with which humans use color are in stark contrast with the

complexity of the phenomenon color, a topic of research in numerous fields of science (e.g.,

physics, biology, psychology, and computer science). Despite their distinct views on color,

scientists in these fields agree that color is of the utmost importance in image processing,

both by humans and by computers. However, the use of color analysis increases the compu-

tational cost for image analysis algorithms, since instead of one dimension, three dimensions

are present. Therefore, color images are often converted to gray-scale images, when texture

analysis has to be performed (e.g., see Figure 10.2). Not surprisingly, with this conversion

texture information is lost; e.g., using a standard conversion, red, green, and blue can result

in the same gray-scale. Nevertheless, as Palm [205] already denoted: “The integration of

color and texture is still exceptional”. However, in the literature three distinct approaches

to combine color and texture can be found: parallel, sequential, and integrative [205]. In

the parallel approach, color and texture are evaluated separately, as shown in Figure 10.2.

Sequential approaches use color analysis as a first step of the process chain: After the color

space is quantized, gray-scale texture methods are applied, as shown in Figure 10.3. The

integrative method uses the different color channels of an image and performs the texture

analysis methods on each channel separately.

Palm [205] used an integrative method to test classification results on color textures

and found that the use of color improved classification performance significantly. Drim-

barean and Whelan [80] used three texture analysis methods on five different color spaces,

with one (coarse) color quantization scheme in an integrative method to test classification

results. The use of color improved performance, but no single color space outperformed the

others. The results presented in the previous chapter confirm the additional value of color

for texture analysis of color images. Mäenpää and Pietikäinen [172] used five different color

spaces and two texture analysis techniques to determine whether color and texture should

be used in parallel or sequential. They concluded that combining color and texture gave

only minimal performance improvement, and that, when combining color and texture, the

sequential approach should be preferred.

However, no reports are available that combine studies toward the influence of vary-

ing the color space, the quantization scheme, and the way color and texture are combined,

for either the parallel approach, the sequential approach, or a combined approach. In this

chapter, each of these variations is applied. Moreover, the new parallel-sequential approach

is introduced: the color correlogram combined with the color histogram.

In the next section, the color spaces and the quantization schemes applied on them

are described together with the color and texture analysis techniques (i.e., the co-occurrence
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matrix, the color histogram, and the color correlogram), the texture database, and the clas-

sifiers used. As baselines, the co-occurrence matrix, the color histogram, and the color cor-

relogram are applied, in Section 10.3. In Section 10.4, the new parallel-sequential approach

is introduced and directly compared with the parallel approach. We end this chapter with a

conclusion.

10.2 Method

Texture can be analyzed, using a simple color to gray-scale conversion or a color quantiza-

tion scheme, as discussed in the previous chapter. Several texture analysis techniques have

been developed, both for general and for specific purposes. One of the more intuitive tex-

ture descriptors is the co-occurrence matrix [106], which was developed for intensity based

texture analysis. However, it can also be applied for colorful texture analysis; then it is de-

noted as the color correlogram [118], a sequential colorful texture analysis method: first,

color is quantized and second, texture is analyzed. In Chapter 9, we determined which

feature-distance combinations, derived from the co-occurrence matrix or color correlogram,

perform best. The best classification was found for a combination of four features: entropy,

inverse difference moment, cluster prominence, and Haralick’s correlation, with d = 1. Sub-

sequently, this configuration was also chosen for the current line of research.

For both the co-occurrence matrix and the color correlogram, the color spaces RGB,

HSV, YIQ, YUV, XYZ, and LUV were used (see also Chapter 2). In addition, the color

correlogram was combined with the human-based 11 color categories [16, 75, 219]. A

complete overview of the schemes applied is presented in Table 10.1. In total, 170 different

configurations were applied: 30 for the co-occurrence matrix, 20 for the color histogram, 45

for the color correlogram, and 75 for the combined approaches.

The VisTex texture database [178], which consists of 19 labeled classes, was used as test

bed both for the baselines (see Section 10.3) and for the comparison between the parallel and

Table 10.1: The quantization schemes applied on the six color spaces and on the 11
color categories, for each texture descriptor. Note that YUV* is sampled
for the color correlogram (see Section 2.3).

Color space Co-occurrence matrix Color histogram /
Color correlogram

RGB 8, 16, 32, 64, 128 8, 64, 216, 512, 4096
HSV 8, 16, 32, 64, 128 27, 54, 108, 162, 324
YIQ, YUV*, XYZ, LUV 8, 16, 32, 64, 128 8, 27, 64, 125, 216
11 colors 11, 27, 36, 70, 225
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parallel-sequential approach for texture analysis (see Section 10.4). The classes with less than

10 images were not used in this experiment. This resulted in four classes: bark (13 images),

food (12 images), fabric (20 images), and leaves (17 images). In order to generate more data

for the classifiers, we adapted the approach of Palm [205] and Mäenpää and Pietikäinen

[172]: the original images were split into four sub-images, resulting in a database of 248

textures.

For all research described in this chapter, a combination of three classifiers, as described

in Chapter 9, was used: a linear discriminant classifier, a 1-nearest neighbor classifier, and

a probabilistic neural network, taken from the MATLAB R© library using their default pa-

rameters. The output of this classifier combination was determined using the technique of

majority voting [147]: when at least two of the three classifiers agree on the class label of a

sample image, this label is given else the label false is given. The training and test set for the

classifiers were composed using random picking, with the prerequisite that each class had

an equal amount of training data.

10.3 Three baselines

As a first baseline, the co-occurrence matrix as standard, intensity-based texture analysis is

used. The results are presented in Table 10.2. The complete results are available online [37].

The CIE LUV quantized in 8 bins and the HSV color space quantized in 32 bins performed

best with a classification performance of 58%. Overall, the performances among different

color spaces were about the same. Hence, for intensity-based texture analysis, the choice

of color space is not crucial. The quantization scheme chosen is important, usually a lower

number of bins performs better: In no instance, the largest number of bins gave the best

results.

Table 10.2: The best classification results (%) of the color histogram, the co-occurrence matrix,
and the color correlogram, for several color space - quantization scheme (#bins)
combination.

Color
space

Co-occurrence matrix Color histogram Color correlogram

#bins % #bins % #bins %
RGB 8 56% 4096 87% 8 68%
HSV 32 58% 27 88% 162 74%
YIQ 8 54% 125 53%
YUV 4:4:4 8 54% 27 52%
XYZ 64 56% 27 71%
LUV 8 58% 64 84% 27 66%
11 colors 11 84% 27 72%
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Figure 10.1: The parallel approach for texture analysis, using global color features and lo-
cal intensity differences. In parallel, the color histogram is determined, after
the quantization of color, and the co-occurrence matrix is calculated, after the
conversion to gray-scale and the quantization of gray values.

Next to texture, the global color distribution within an image is frequently used as fea-

ture for classification and retrieval of images. Therefore, as a second baseline, we conducted

an image classification experiment, using color solely by calculating the color histograms. In

Table 10.2, the best four classification results are presented. The complete results are avail-

able online [37]. Classification by use of quantizations of the RGB color space results in a

low performance (i.e., ranging from 19–48%), except for the 4096 bin quantization scheme (as

used in QBIC [270]). However, the latter suffers from an unacceptable computational load,

especially for real-time image analysis applications (e.g., content-based image retrieval).

Therefore, the RGB color space is not suitable for color-based image classification. The clas-

sification using the coarsest LUV quantization (8 bins) had a poor performance. All other

quantizations, using the LUV color space, resulted in high classification performance. The

color-based texture classification, using the coarse 11 color quantization scheme, performed

well (84%) (see Table 10.2), especially when considering its low computational complexity.

The 27 bins quantizations of the HSV color space performed best with 88%.

As the third baseline, sequential texture analysis is performed (see Figure 10.3), with

the color correlogram using six different color spaces. The results are presented in Table 10.2.

In addition, the 11 color categories scheme was applied using several quantization schemes

(see Section 13.4). The HSV color space performed best in combination with the color correl-

ogram (see Table 10.2). This can be explained by the relatively high precision in color (Hue)

quantization of the HSV 162 bins scheme. However, the color correlogram founded on the

11 color categories also performed good with 72% precision.

122



10.4 Parallel-sequential texture analysis: color histogram & color correlogram
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Figure 10.2: The sequential approach for texture analysis: after color quantization the color
correlogram is utilized.

In line with the findings presented in the previous chapter, using more bins does usu-

ally not improve performance. In no instance, the largest number of bins gave the best

results. This result emphasizes the importance of using a coarse color quantization scheme

such as that of the 11 color categories in which one can represent colors (see also Chapter 2).

10.4 Parallel-sequential texture analysis: color histogram &

color correlogram

In the previous sections, we have discussed the classification of the VisTex images, using

intensity-based texture features (i.e., the co-occurrence matrix), color histograms, and a se-

quential of color and texture: the color correlogram. However, better classification results

may be achieved when these methods are combined.

In the current section, a new color induced texture analysis approach is introduced:

the parallel-sequential approach, which combines the color correlogram and the color his-

togram, as is visualized in Figure 10.3. This new approach is compared with the parallel

texture analysis approach: the co-occurrence matrix combined with the color histogram, as

is visualized in Figure 10.2.

First, the color histogram data and texture features were concatenated. The six best

color histograms were used in combination with both the two best quantization schemes of

each color space (for the color correlogram) and the best intensity quantization scheme (for

the co-occurrence matrix). The RGB color histogram was excluded since it only performs

well with a quantization that is computationally too expensive (see Table 10.2).

In Table 10.3, the results of the parallel approach (i.e., combination of color histogram

and co-occurrence matrix, see also Figure 10.2) are provided. In general, the color histogram
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Figure 10.3: The new parallel-sequential approach for texture analysis which yields in par-
allel: global color analysis, using the color histogram, and color induced texture
analysis, using the color correlogram.

based on the HSV 162 bins quantization scheme performed best (91 − 92%). However, the

computationally much cheaper 11 color quantization scheme did also have a high perfor-

mance (88%), when combined with the on HSV 32 bins based co-occurrence matrix (see

Table 10.3). Therefore, the latter combination should be taken into account for real-time

systems, using color and texture analysis.

The new parallel-sequential approach has a correct classification ranging from 84% to

96% (see Table 10.3). So, the combination color histogram with color correlogram improved

the classification performance significantly, compared to each of them separately (cf. Ta-

ble 10.2 and 10.3).

The configurations using coarse color quantizations for the definition of the color cor-

relogram, outperformed the more precise color quantizations for all color spaces. The 11

color categories color quantization using 27 bins for the color correlogram, performed best

on average (92.6%), followed by the HSV-27 bins configuration (91.0%). Concerning the

color histogram configurations, the highest average correct classification was provided by

the HSV-162 bins color histogram (92.8%), followed by the 11 color categories color his-

togram with 91.2%.

The best color correlogram - color histogram combinations were: the 11 colors, 27 bins

correlogram & 11 colors histogram, the 11 colors, 27 bins correlogram & HSV-162 color his-

togram, and the XYZ, 27 bins correlogram & LUV-125 color histogram (the percentages are

denoted bold in Table 10.3). When considering the computational complexity of these com-

binations, the first combination should be preferred, with its feature-vector of size 15: 11

colors + 4 features derived from the 11 colors 27 bins color correlogram, as described in

Section 13.4.
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Table 10.3: The classification results of the best combinations of color histograms with co-
occurrence matrices (the parallel approach, see also Figure 10.2) and with color
correlograms (the parallel-sequential approach, see also Figure 10.3), using sev-
eral quantizations of color spaces.

Color histogram
11 colors HSV-27 HSV-162 LUV-64 LUV-125

Co-occurrence matrix HSV-32 88% 90% 92% 82% 90%
LUV-8 84% 89% 92% 82% 88%
RGB-8 84% 89% 92% 82% 88%
XYZ-64 87% 84% 91% 79% 90%
YUV/YIQ-8 83% 87% 92% 81% 89%

Color correlogram 11 colors-27 94% 92% 96% 92% 89%
HSV-27 93% 87% 92% 92% 91%
LUV-27 90% 89% 91% 88% 89%
RGB-8 92% 91% 93% 86% 87%
XYZ-27 87% 89% 92% 84% 94%

10.5 Conclusion

Determining the optimal configuration for color-based texture analysis is very important

since the success of image classification and image retrieval systems depends on this con-

figuration. Therefore, in this chapter, a series of experiments was presented exploring a

variety of aspects concerning color-based texture analysis. The color histogram, the co-

occurrence matrix, the color correlogram, and their combinations (i.e., the parallel and se-

quential approach) were compared with one another, using several color spaces and quan-

tization schemes. A new texture analysis method: the parallel-sequential approach, was

introduced.

The worst classification results were obtained when only intensity-based texture anal-

ysis (i.e., the co-occurrence matrix) was used, the best classification performance in this

setting was 58% for the HSV and CIE LUV color spaces. Including color sequentially, us-

ing the color correlogram, gave better results (74%). The parallel approach (i.e., color his-

togram combined with the co-occurrence matrix improved the performance substantially

(see Table 10.3). However, by far the best classification results were obtained using the new

parallel-sequential approach (i.e., color histogram and color correlogram combined, a per-

formance of 96% correct classification was obtained, using the HSV 162 bins color histogram

in combination with the color correlogram for the 11 color categories with 27 bins. These

results indicate that the use of color for image analysis is very important, as classification

performance was improved by 38%, compared with the most widely used, intensity-based,

co-occurence matrix. Moreover, in general, coarse color quantization schemes perform ex-

cellent and should be preferred to more precise schemes.
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The success of the parallel-sequential approach emphasizes the importance of both the

global color distribution in images, as identified by the color histogram, and the importance

of the utilization of color with the analysis of texture. As was shown, ignoring color in

either texture analysis or as a global feature impairs the classification of image material

substantially. Moreover, the complementary character of global color and color induced

texture analysis is illustrated.

Follow-up research should challenge the parallel-sequential approach, by exploring

and comparing different texture analysis methods with the parallel-sequential approach in-

troduced in this chapter. Moreover, the use of combining texture analysis methods should be

investigated since it might provide the means to increase classification results [257]. Prefer-

ably, this research should be conducted using a much larger database of textures.

Regardless of texture analysis methods, note that the computationally inexpensive and

well performing 11 color categories are human-based. In the next chapter, we will investi-

gate whether the texture analysis techniques discussed in the current chapter can mimic

human texture classification. This is of the utmost importance as it is the human who will

use and judge the systems in which texture analysis techniques are incorporated [40, 270].
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Abstract

An attempt was made to mimic human (colorful) texture classification by a clustering algo-

rithm. As test set, 180 texture images (both their color and gray-scale equivalent) were drawn

from the OuTex and VisTex databases. First, a k-means algorithm was applied with three

feature vectors, based on color/gray values, four texture features, and their combination. Sec-

ond, 18 participants clustered the images, using a newly developed card sorting program. The

mutual agreement between the participants was 57% and 56% and between the algorithm and

the participants it was 47% and 45%, for resp. color and gray-scale texture images. Third, in

a benchmark, 30 participants judged the algorithms’ clusters with gray-scale textures as more

homogeneous then those with colored textures. However, a high interpersonal variability was

present for both the color and the gray-scale clusters. So, despite the promising results, it is

questionable whether average human texture classification can be mimicked (if it exists at all).

This chapter is almost identical to:

Rikxoort, E. M. van, Broek, E. L. van den, and Schouten, Th. E. (2005). Mimicking human

texture classification. Proceedings of SPIE (Human Vision and Electronic Imaging X), 5666, 215-

226.



11.1 Introduction

11.1 Introduction

Most computer vision (CV) and content-based image retrieval (CBIR) systems [30, 125, 193,

209, 270] rely on the analysis of features such as color, texture, shape, and spatial char-

acteristics. Some of these CV and CBIR systems are partly founded on principles known

from human perception. However, these systems are seldomly validated with experiments

where humans judge their artificial counterparts. This, despite the mismatch that is present

between user needs and current image retrieval techniques [117]. The current chapter dis-

cusses the process of such a validation for the artificial analysis of texture; i.e., mimicking

human texture classification. In addition, the influence of color on texture classification is a

topic of research.

As feature for the human visual system, texture reveals scene depth and surface orien-

tation; moreover, it describes properties like the smoothness, coarseness, and regularity of a

region (cf. Rao and Lohse [218], Battiato, Gallo, and Nicotra [9], Koenderink et al. [148], Pont

and Koenderink [215], and Van Rikxoort and Van den Broek [223]). Texture is efficiently en-

coded by the human visual system; as Bergen and Adelson [14] stated: “. . . simple filtering

processes operating directly on the image intensities can sometimes have surprisingly good

explanatory power.” Inspired by human texture processing, artificial texture analysis tech-

niques describe similar properties as human perception does. However, direct comparisons

between human and artificial texture processing are seldomly made.

In 2000, Payne, Hepplewhite, and Stonham [207] presented research toward mimick-

ing human texture classification. Given a target image, they asked 30 humans to classify

textures. Next, they compared these classifications with the classifications done by several

texture analysis techniques. They concluded that, where the human visual system works

well for many different textures, most texture analysis techniques do not. For only 20%−25%

of the textures, a match was found between artificial and human classification.

The research of Payne et al. [207] concerned gray-scale texture analysis, as most re-

search in CV and CBIR. This, despite that most image material is in color. As Palm [205]

already denoted: “The integration of color and texture is still exceptional.” From a scien-

tific point of view, one can argue that since neither texture nor color is fully understood,

the influence on each other is simply too unpredictable to do research in, at least outside a

controlled experimental environment.

Color on its own, already is a complex phenomenon, as is texture. The perception of

color is influenced by both environmental issues (e.g., position of the light source and prop-

erties of material) and internal processes present in the observer (e.g., color constancy [321]).

However, concerning color classification or categorization, evidence is present for the exis-

tence of 11 color categories [16, 23, 28, 75, 219, 286]: black, white, red, green, yellow, blue,

brown, purple, pink, orange, and gray, used by human memory (see Chapters 3–10). Re-
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cently, this concept was embraced and utilized for the development of color-based image

retrieval, as discussed in Chapters 7 and 8.

Our approach to mimicking human (colorful) texture classification is different from

the approach used by Payne et al. [207] First, we let a k-means algorithm cluster the whole

dataset using different feature vectors (Section 11.3). Next, in Section 11.4, we let humans

cluster the whole dataset and in Section 11.5, we determine to which extend our k-means

clusterings mimic the human clustering. As a follow up study, we let humans judge the

clusters generated by the artificial clustering techniques (Section 11.6). We conclude with a

discussion in Section 11.7.

11.2 Experimental setup

In this section, general specifications are provided, which hold for all three experiments:

automatic clustering, human clustering, and humans judging the automatic clustering. As

data, a collection of 180 colorful texture images were drawn from the OuTex [200] and Vis-

Tex [178] databases. Two criteria were used when selecting the images: (i) there had to be

images from at least fifteen different categories and (ii), when a class was extremely large

compared to the other classes, only a subset of the class is used. Moreover, the images were

resized in order to fit on one screen. This was needed to facilitate an optimal and pleasant

execution of the experiment. Figure 11.1 provides an overview of all the 180 images.

In both the first and the second line of research, two experiments were conducted: one

with the original color images and one with gray versions of the same images. To obtain

the latter, the set of 180 images was converted to gray-scale (I) images; see Equation 9.3.

Now, two identical sets of images were present, except for presence versus absence of color

information.

Clustering of images can be seen as sorting the images in a number of categories or

stacks. So, the clustering of texture images can be treated as a card sorting task [190]. In

such a task, the participant is asked to sort cards (e.g., images) and put them on separate

stacks. As a consequence, only the top image on each stack is visible. So, participants have

to memorize a representation of each of the stacks they defined. However, during the task

the number of images on the stacks will increase and the content of the stack will change.

Therefore, also the representation of the stacks needs to be updated, for which the human

visual Short Term Memory (vSTM) [48] has to be taken into account.

Human vSTM can contain four [319] to fourteen [220] items. The number of clusters

made by humans needs to be within this range. To be able to compare the clusters of textures

made by the participants, they all had to define the same number of clusters. Moreover, the

automatic clustering also had to result in the same number of clusters in order to be able to
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Figure 11.1: An overview of all 180 images (the color version) used in the clustering experi-
ments with both human participants and the automatic classifier. See Figure B.8
in Appendix B for a large color print of this screendump.

compare it with its human counter parts.

To determine this number of clusters, we asked five experts to cluster the images in an

arbitrary number of clusters, with an upper limit of fourteen. The mean number of clusters

produced by the experts is taken as the number of clusters to be produced. The experts de-

termined the optimal number of clusters for this dataset, on both the gray-value and colorful

images, to be six.

11.3 Automatic texture clustering

Automatic texture clustering is done in three steps, for both sets of images: (1) defining a

suitable feature space, (2) calculate the feature vector of each image, such that each image is

represented by a point in the feature space, (3) find groups or clusters of points in the feature

space.
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11.3.1 Clustering techniques

Many approaches have been developed for clustering points in feature space; see

Mitchel [128] and Berkhin [15] for recent surveys. These approaches can be divided in two

groups from the perspective whether or not additional information on data points is avail-

able.

Supervised approaches need, at least for a representative sample of the data points,

information to which cluster each data point belongs. In our case this would mean dividing

the data set provided by the human clustering into two or three parts: a part used for train-

ing a supervised method, a part for evaluating the parameters used during training (this is

often not done as the available supervised data set is usually small), and a part for evaluat-

ing the final result of the clustering. In our case, the data set is too small to allow splitting it

into parts.

Unsupervised methods do not need labeling of the data points. But usually they re-

quire the number of clusters as additional input. Either they use it as a fixed a priori number

needed to start the clustering process, or they use it as a termination condition, otherwise

they would continue until each data point is its own cluster. In our case, the number of in-

trinsic clusters, was determined by experts (Section 11.2), who determined the output to be

six clusters. This enables us to compare the automatic clustering to the human clustering.

Since we did not have any information on the distribution of the points in our feature

space, we evaluated two general applicable and often used methods: hierarchical clustering

and k-means clustering. Evaluation of these two methods on an early available subset of

our data did not show a preference for one of the two: the results were comparable. For this

chapter, we chose to use the k-means method as it has somewhat more possibilities to tune

certain parameters.

11.3.2 Feature vectors

In this research, three distinct feature vectors are used for the k-means algorithm. In Chap-

ter 10, we determined the optimal configurations for both colorful and gray-scale texture

classification. The optimal configuration for colorful texture analysis turned out to be our

new parallel-sequential approach, using four texture features (i.e., entropy, inverse dif-

ference moment, cluster prominence, and Haralick’s correlation), from the color correlo-

gram [118] based on the 11 color categories [16, 23, 28, 75, 219, 286] combined with the 11

color histogram. For gray-scale texture analysis, the parallel approach performed best, in

which the four texture features from the co-occurrence matrix [106, 257, 300] based on the

HSV color space using 32 bins, are combined with a histogram from the HSV color space

quantized in 27 bins.
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In this experiment, for both color and gray-scale, k-means clustering was applied using

three different feature vector configurations consisting of: (i) color or gray-scale information;

i.e., the histogram, (ii) textural information; i.e., the four texture features, and (iii) both color

and texture information; i.e., the histogram and the four texture features.

For each of the six vectors used in the k-means clustering, six clusters of images re-

sulted. In Table 11.1, the size of each of the clusters is shown.

Table 11.1: The size of the six clusters constructed by the k-means algorithm
for the different feature vectors for both color and gray-scale.

Feature vector Color Gray-scale
Texture features 17 18 68 13 15 49 3 19 66 20 43 29
Color/gray-scale features 29 29 30 25 29 38 25 33 13 18 38 53
Combined features 42 25 24 25 28 36 15 14 49 28 32 42

11.4 Human texture clustering

11.4.1 Method

Eighteen subjects with normal or corrected-to-normal vision and no color deficiencies par-

ticipated. They all participated on a voluntary basis. Their age ranged from 16 to 60. Half of

them were male and half of them were female. All participants were naive with respect to

the goal of the research and one of them was specialized in color or texture perception.

The experiments were executed on multiple PCs. In all cases the screen of the PC

was set on a resolution of 1024 × 768 pixels. Moreover, we assured that the experiment

was conducted in an average office lighting. We chose for this loosely controlled setup

of apparatus, since it represented an average office situation and our opinion is that good

algorithms mimicking human perception should be generally applicable and robust enough

to handle images, which are taken and viewed under various circumstances. To put it in a

nutshell, we consider the world as our experimental environment.

Two experiments were conducted. They differed only with respect to the stimuli; i.e.,

the texture images (see Section 11.2 and Figure 11.1). In one of the experiments color im-

ages were presented; in the other experiment their gray-scale equivalents were presented

(see also Section 11.2). In order to control for possible order effects, half of the participants

executed the experiments in the one order and the other half in the other order.

As discussed in Section 11.2, clustering of images can be represented as a card sort-

ing task. However, in order to control and automate the sorting task as much as possible,

a Tcl/Tk program was used that fully operationalized the desktop metaphor. A canvas
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(i.e., window) was presented on a computer screen in which the images can be moved and

stacked on each other, just like on a regular desktop [46, 96].

At the start of the experiments, the images are shown as a pile on the canvas. To tackle

possible effects in sorting due to the order of presentation of the images, the images were

placed in random order on the pile. So, at the start of the experiment, the canvas presented

one pile of 180 randomly sorted images, as is shown in Figure 11.2.

The participants were able to drag the images by way of a mouse. They were allowed

to drag the images all over the screen and drop them on any position wanted. During

the experiment, all images were free to be positioned otherwise and, so, it was possible

to change, merge, or divide already defined stacks. The only restriction was that the six

resulting stacks were placed clearly separately from each other in order to tackle possible

overlap between stacks. An example of such a final cluster is provided in Figure 11.2.

The participants were not instructed what features to use for the classification. This

loose instruction guaranteed an unbiased human texture classification. The latter was of

the utmost importance since we wanted to mimic human texture classification and were not

primarily interested in the underlying (un)conscious decision making process.

After a definite choice of clusters was determined, the result was saved (by pressing

the save button). For each image, its coordinates as well as its name were saved. Hence, the

stacks could be reproduced, visualized, and analyzed easily.

11.4.2 Data analysis

For both experiments, the same data analysis was applied. In this section, the data analysis

is described; in the next section, the results are presented.

For each of the 153 (18!/(16!·2!)) unique pairs of participants (pi, pj), a consensus matrix

(M(pi,pj)) of size 6×6 was determined, which contains for each pair of clusters, the number of

images that match. Non-unique pairs of clusters were chosen since one cluster of participant

i can encapsulate the images assigned to two separate clusters by a participant j and vice

versa. From the set of confusion matrices, two data were derived: (i) the average consensus

on the clustering between participants and (ii) the most prototypical set of clusters; in other

words, the most prototypical participant.

The average consensus in the clustering between participants was determined as fol-

lows: For each pair of participants (pi, pj), the consensus C(pi,pj) is determined by summing

the highest value of each of the six rows of the consensus matrix M(pi,pj), where each of the

six values of each of the rows denotes the intersection (or consensus) between two clusters

of pi and pj . So, C(pi,pj) =
∑6

i=1 max{rowi}. Now, the overall consensus can be determined

by: 1
153

∑

pipj
C(pipj)

.
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Figure 11.2: Above: The start condition of the experiment: one pile of 180 images. Below: An
example of a final result of an experiment: six clusters of images. See Figure B.9
in Appendix B for a large full color print of these screendumps.

Of particular interest is the most prototypical set of clusters since it describes the most

prototypical human (clustering); i.e., the highest average consensus to all other participants.

The average consensus A of participant pi is defined by: Api
= 1

17

∑17
j=1 C(pi,pj). Subsequently,

the most prototypical participant (or the most prototypical set of clusters) is defined as:

Cave = max{Api
}.

11.4.3 Results of colorful texture clustering

The average consensus between the participants with respect to colorful textures was 57%,

ranging from 39% to 87%. The consensus matrix describing the consensus between all pairs

of participants (Table 11.2, the numbers in a normal font), illustrates the variance present be-

tween the participants, in the clusterings. Please note, for color-based similarity judgments

of images, participants also vary strongly, as described in Chapter 8.

In order to establish the most prototypical set of clusters, we determined a set of core

images, based on the consensus matrices. For each consensus matrix (of two persons), for

each cluster of pi is determined which cluster of pj matches best. Now, the core images

are determined as follows: For each image is determined how often it is in the intersection

of two clusters (of two distinct persons). Note, this interval ranges between 0 and 153. An

image is labeled to be a core image when at least 45% (of 153 pairs) of the participants agreed

that it is in a certain cluster. This approach is adopted from Payne et al. [207]. The threshold

of 45% was chosen because the clustering is probably a fuzzy one and with this treshold,

images can be assigned to two different clusters and still be a core image. For the colorful

textures, this resulted in a set of 88 (out of 180) core images. The overall, average consensus

between the participants on the core images was 70%.
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Table 11.2: The consensus on the clustering between the 18 participants (p).
The numbers in a normal font denote the colorful images; the
numbers in the italic font denote the gray-scale images.

p01 p02 p03 p04 p05 p06 p07 p08 p09 p10 p11 p12 p13 p14 p15 p16 p17 p18
p01 – 66 60 68 54 39 50 63 46 79 50 53 64 50 51 54 69 49
p02 50 – 67 74 50 39 50 56 51 78 48 45 58 44 49 56 46 60
p03 63 55 – 60 60 40 48 60 45 81 50 50 61 47 51 56 58 54
p04 54 53 56 – 50 38 49 70 54 87 53 55 67 44 57 60 63 61
p05 48 51 50 42 – 36 40 55 40 68 45 44 49 46 55 52 51 54
p06 46 37 41 40 40 – 38 49 45 70 42 41 49 39 46 42 41 37
p07 54 58 78 53 50 43 – 63 55 87 52 50 59 54 50 55 52 53
p08 58 59 71 59 53 46 68 – 56 83 54 54 56 49 50 53 62 50
p09 52 51 65 47 46 36 60 53 – 78 49 53 59 42 52 51 49 59
p10 46 46 56 43 49 42 53 45 47 – 51 51 54 41 54 54 51 51
p11 68 55 70 63 50 54 63 66 64 64 – 55 63 52 54 61 59 61
p12 52 55 63 61 51 44 57 57 48 46 49 – 55 47 49 50 50 54
p13 60 45 56 55 43 41 47 49 45 49 64 58 – 51 54 59 72 64
p14 55 54 66 51 48 44 65 61 45 51 58 56 59 – 50 56 49 59
p15 47 53 57 47 60 49 53 54 51 49 47 52 50 56 – 47 45 45
p16 47 50 55 51 45 40 49 49 41 51 49 56 62 51 51 – 52 65
p17 65 53 60 61 45 40 51 55 41 40 51 61 74 50 44 49 – 48
p18 58 58 70 57 53 45 59 60 53 56 55 64 64 61 55 60 63 –

Based on the set of core images, it was possible to determine the most prototypical

participant. The participant with the highest average consensus with all other participants

on these core images is the most prototypical participant. One participant did have an av-

erage consensus of 82% with all other participants; hence, the clusters of this participant are

labeled as prototypical clusters.

The prototypical clusters are now used to determine the base images for all prototypi-

cal clusters. An image is be a base image for a particular cluster if it is assigned to the cluster

by at least 8 (18/2 − 1) participants. The clusters can be described by respectively, 37, 26, 14,

37, 37, and 45 base images. Moreover, 24 images appeared to be a base image for more than

one cluster. The mean frequency of the base images in the clusters is 11.74.

11.4.4 Results of gray-value texture clustering

The average consensus between the participants with respect to gray-value textures was

56%, ranging from 36% to 78%. In Table 11.2, the numbers in an italic font, provide the

consensus between all pairs of participants. As Table 11.2 illustrates, a considerable amount

of variance is present in the consensus between the participants on the clustering of gray-

scale textures.
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For the determination of the core images, again a threshold of 45% was chosen. This

resulted in a set of 95 (out of 180) core images, which is slightly more than with the color

textures. In contrast, the average consensus between the participants on the gray-value

images was slightly less (65%) than with the color textures. The participant assigned as

prototypical, did have an average consensus of 73% to all other participants.

The clusters can be described by respectively, 32, 21, 32, 44, 24, and 46 base images.

Moreover, 42 images appeared to be a base image for more than one cluster. The mean

frequency of the base images in the clusters is 12.01.

11.5 Automatic versus human texture clustering

Since the goal of this research is to mimic human texture classification, we want to compare

the automatically generated clusters to the clusters generated by the human participants.

For this purpose, the same analysis is applied for the colorful textures and the gray-scale

textures. For both the clusters of color and gray-scale images, each of the 54(18 · 3) unique

pairs of participant - automatic clusterings, a consensus matrix was constructed, using the

base images (see Section 11.4.3). The base images were used since they describe the human

clusters. Two types of similarity were derived from these matrices: (i) the overall consensus

between the automatic clusterings and the human clusterings and (ii) the consensus based

on the clusters defined by their base images (see also Section 11.4.3).

11.5.1 Data analysis

The consensus between the automatic and the human clusterings was determined as de-

scribed in Section 11.4.2 with (pi, pj) being a pair of participant - automatic clustering, in-

stead of a pair of participants. Next to the average consensus, the consensus on the proto-

typical clustering (as described in Section 11.4.3) is of interest. For this purpose, we will now

define: a binary measure and a weighted measure.

11.5.1.A Binary measure of agreement

The binary measure of agreement assigns one cluster (c) to each image (I) by means of the

frequency of assignment by the participants (see Section 11.4.3). The cluster with the highest

frequency of assignment is assigned to the image (Ic). This clustering is compared to the

automatic clusterings for each image (Ia) in a binary way.

Let φ be the binary value assigned to each image. Then, for each image I , φ is 1 when

Ic = Ia and φ is 0 when Ic 6= Ia. The total binary agreement is now defined by
∑

φ . Last,
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the binary agreement for each cluster x is defined by
∑

φ |c = x. The total binary agreement

is normalized by dividing it by the number of images.

11.5.1.B Weighted measure of agreement

The weighted measure of agreement weights the agreement on the clustering and is based

on the frequencies of assignment to a cluster by humans. The frequencies are divided in

four categories, the first category has a frequency of at least 15, the second category has a

frequency of at least 11, the third category has a frequency of at least 7, and finally the fourth

category has a frequency less than 7.

Let θ be the weighted measurement value for each image. Then, for each image I , θ is

3 when Ia is in the first category, θ is 2 when Ia is in the second category, θ is 1 when Ia is in

the third category, and θ is 0 when Ia is in the last category. The total weighted agreement

is now defined by
∑

θ. The weighted agreement for each cluster x is defined by
∑

θ |c = x.

The weighted agreement is normalized by dividing it by the total weighted agreement of

the most optimal clustering.

The weighted measure is used next to the binary (standard) measure because the hu-

man clustering is a fuzzy one and is only defined by the frequencies of assignment. In the

binary measure, these frequencies are not used; hence, it can be considered as a baseline

measure.

11.5.2 Results

11.5.2.A Colorful textures

For the colorful textures, three configurations (i.e., feature vectors) for k-means clustering

were used (see Section 11.3): (i) the 11 color histogram, (ii) the four texture features, and (iii)

a combination of the color and texture features, resulting in a feature vector of length 15.

For each of the three feature vectors, its average consensus with the participants’ clus-

ters was determined, as described in Section 11.4. The average consensus between human

and automatic clustering using only color information was 45%, using only texture informa-

tion it was 46%, and using both color and texture information it was 47%.

In Table 11.3, the results from the binary and weighted measures of agreement, be-

tween human and automatic clustering are given. It is possible that no images are assigned

to a particular human cluster because we adopted the same approach for the calculation of

the consensus as described in Section 11.4: non-unique mapping of the clusters. So, when

one human cluster is matched twice by the artificial classifier, another cluster is not matched.
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The percentages marked with a * in Table 11.3 are the result of the fact that no images were

assigned to the particular cluster by the specific automatic clustering.

For the binary measure, there are two clusters on which one of the feature vectors had

a percentage of more than 50%. For the weighted measure, four clusters present a consensus

of more than 50% between human and artificial clusterings (see also Table 11.3).

Table 11.3: The percentages of agreement between human and automatic
clustering in classification of the colorful images, for each clus-
ter and for the whole dataset, using the binary measure and the
weighted measure.

Cluster binary measure weighted measure
color texture combined gray texture combined

1 35% 22% 32% 50% 50% 50%
2 42% 46% 42% 39% 62% 61%
3 0%* 0%* 0%* 100%* 100%* 100%*
4 22% 16% 22% 58% 73% 69%
5 76% 54% 60% 60% 83% 45%
6 40% 53% 53% 85% 43% 71%
All images 44% 39% 43% 42% 44% 45%

11.5.2.B Gray-scale textures

For the gray-scale textures, three configurations (i.e., feature vectors) for k-means clustering

were used (see Section 11.3): (i) the 32 bins HSV gray-scale histogram, (ii) the four texture

features, and (iii) a combination of the histogram and texture features, resulting in a feature

vector of length 36.

For each configuration of automatic clustering, its average consensus with the partici-

pants’ clusters was determined, as described in Section 11.4. The average consensus on the

automatic clustering, using only gray-scale information was 44%, using only texture infor-

mation it was 45%, and using gray-scale and texture information it was 42%.

In Table 11.4, the results from the binary and weighted measures of agreement, be-

tween human and automatic clustering are given. For the binary measure, there are four

clusters on which one of the automatic classifiers had a percentage of more than 50%. For

the weighted measure, five clusters present a consensus of more than 50% between human

and artificial clustering.
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Table 11.4: The percentages of agreement between human and automatic
clustering in classification of the gray-scale images, for each
cluster and for the whole dataset, using the binary measure
and the weighted measure.

Cluster binary measure weighted measure
gray texture combined gray texture combined

1 100% 44% 50% 97% 47% 62%
2 52% 0% 62% 100% 70% 59%
3 0% 0% 0% 100*% 100*% 100*%
4 61% 68% 68% 79% 65% 71%
5 88% 0% 83% 100% 100*% 100%
6 0% 7% 0% 100*% 100% 100*%
All images 36% 41% 44% 33% 41% 43%

11.6 Humans judging automatic clustering

As a follow up experiment, humans were asked to judge the clusters generated by the au-

tomatic clustering algorithm. For both color and texture, the clusters of the automatic clus-

tering algorithm with the best average performance were chosen. For color, the k-means

algorithm, using color and texture features was selected. For gray-scale, the k-means algo-

rithm, using only texture features was selected.

For this experiment, the benchmark was used as was introduced in Chapter 6. It

allowed users to judge each individual cluster for its homogeneity and correctness. The

benchmark showed all images of a cluster in one screen, at the bottom of the screen a mark

between 1 and 10 can be given for the homogeneity of the cluster shown. All users are pre-

sented with 12 screens: 6 containing gray-scale images and 6 containing colorful images. A

screendump from the benchmark is shown in Figure 11.3.

In this experiment, 36 subjects, with normal or corrected-to-normal vision and no color

deficiencies participated. Their participation was on a voluntary basis and they were naive

with respect to the goal of the research. The age of the participants varied from 18 to 60,

half of the participants were male and half of them were female. The experiment ran online.

The participants were instructed to judge the clusters on their homogeneity. They were not

informed about the clusters being produced by artificial classifiers.

For both the colorful and the gray-scale texture clusters, we determined the average

rating given for the homogeneity of the results. The average rating for the gray-scale clusters

was 6.1, with a standard deviation of 3.1; the average rating for the colorful clusters was 5.2,

also with a standard deviation of 3.1. The gray-scale clusters were judged significantly better

than the colorful clusters (p < .0069). The high standard deviations of the ratings denote a

high variation between the participants in judging the clusters.
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Figure 11.3: An example screen from the benchmark used to let users judge the automatic
clusters. See Figure B.10 in Appendix B for a color print of this screendump.

11.7 Discussion

In the present research, first a set of 180 texture images were clustered by a k-means cluster-

ing algorithm, using three different feature vectors for both color and gray-scale. Next, 18

humans were asked to cluster the set of texture images both in gray-scale and color. Using

the clusterings of all participants, a set of base images for each cluster was derived, which

describe the clusters. The automatic clusterings were compared to the human clustering

using two measures of agreement (i.e., binary and weighted). In addition, the influence of

color compared to gray-scale was investigated. Last, a benchmark was executed in which

36 participants judged the automatic clustering results.

Note that in artificial versus human texture classification, a gap is present between

the low-level textural features and human texture perception. By mimicking human texture

classification, we aim at mimicking the outcome of human texture classification, we do not

claim that our method mimics the process of human texture classification. To be able to

truly mimic this process, fundamental research should be conducted, as was done for the

development of the human-based, 11 color categories (see Chapter 3).
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11 Mimicking human texture classification

There is little literature available on human texture classification and the literature that

is available uses gray-scale images and reports poor results [207]. One of the exceptions

is the research of Rao and Lohse [218] who developed a texture naming system by asking

humans to judge the properties of a set of textures. They concluded that there are three main

characteristics of texture that are important in human texture vision: repetitivity, contrast,

and coarseness. However, only 56 gray-scale textures were used in their research. To bridge

the gap between the low-level textural features and human texture perception, such research

should be extended to color and be conducted with a larger database, as was done in the

current chapter.

For both the colorful and gray-scale textures, little consensus was present between the

participants. Although all participants reported more trouble clustering the gray-scale im-

ages, the consensus between the participants was almost the same on the colorful textures

and the gray-scale textures (57% vs 56%). The low consensus between the participants indi-

cates that the task of clustering the textures selected was not a trivial one, as was our aim in

selecting the images (see Section 11.4).

The overall success in comparing the automatic classifier to the human classifica-

tions was the same for the colorful textures and the gray-scale textures (45% − 47% versus

42% − 45%). However, when inspecting the results for the separate clusters, more success

is shown on the gray-scale clusters. For the gray-scale textures, using the binary measure

of agreement, for four clusters more than 50% of the images were classified correct. The

weighted measure for the gray-scale images gives a good result on five of the clusters. The

mean percentages of correct classification for the clusters, which are matched well, are 76%

and 95% for the binary and weighted measure respectively.

For the colorful textures, there are respectively two and four clusters that match well.

For the clusters which are matched well, the mean percentages of correct classification are

65% and 80%, for the binary and weighted measure respectively. So, the match in clustering

between humans and the k-means algorithm is more convincing for the gray-scale images

than for the colorful images. This effect of overall performance versus cluster-performance is

caused by the non-unique mappings we used to determine the consensus between clusters.

For gray-scale, there are six instances in which no images are assigned to a particular cluster

(see Table 11.4) which impairs the results over the overall dataset. Moreover, for the clusters

to which images are assigned, good to excellent results are obtained. For the colorful images,

there are only three instances in which no images are assigned to a particular cluster, where

the results for the other clusters are not convincing either.

An inspection of the images itself revealed that the clusters that are mimicked well by

the automatic classifiers, show little variation in color/gray-scale and texture. So, all images

in a well mimicked cluster, have the same texture properties like randomness, directionality,

and coarseness, and show little variation in color/gray-scale. For both gray-scale and color,
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the cluster to which no images were matched by the automatic classifiers, seem to be a

‘garbage group’, in which the human participants put all images they were unable to label.

Such a ‘garbage group’ was mentioned by all participants. This group should be excluded

from further analysis since the participants judged that the images in this group show no

overlap in texture, color, or semantics.

That the gray-scale images are better mimicked by the automatic clustering methods

can partly be explained by the trouble humans reported in clustering the gray-scale images.

These difficulties in clustering were mainly caused by the fact that on the gray-scale images

less semantic information is visible, due to the absence of color. So, on the gray-scale images

humans use more pattern and gray-scale based clustering than semantic based clustering.

In contrast, on the colorful images, most humans used semantic features for clustering.

Although human gray-scale texture clustering was better mimicked by automatic clus-

tering, the results on colorful texture clustering were also satisfying. Especially when com-

pared with other recent research such as that of Payne et al. [207] who reported a mean

correct classification on gray-scale textures that was only 20% − 25%. So, despite the low

percentages of consensus between humans and the clustering algorithm, the results should

be considered as promising. With that, this research presents a successful first attempt to

mimic human colorful texture classification.

In future research, however, a four step approach should be adopted: (i) Let a group

of participants cluster the images. (ii) Based on the clusters of this first group, a set of core

images on which all participants agree to some extend can be determined. (iii) Last, a second

group of participants should cluster this group of core-images. (iv) The resulting clusters

should be compared with results from automatic clustering algorithms. Such an approach

can, on the one hand, help in determining generic characteristics of human texture analysis

and, on the other hand, a functional model can be generated, which mimics human texture

classification.

Research toward human texture analysis and classification has just started. The cur-

rent chapter did discuss one of the few attempts done so far in mimicking human texture

classification. However, we have established an optimal configuration for automatic texture

classification, as determined in Chapter 10 and showed that it is also successful in mimick-

ing human texture classification. The next chapters will illustrate its use for applications like

CBIR. Since the results of CBIR engines are judged by humans, better results can be expected

from human-based techniques. In the next chapter, we will present the development of an

Object-based Image Retrieval (OBIR) engine, which makes use of the optimal configuration

for texture analysis to perform image segmentation and image retrieval.
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Abstract

The development of a new object-based image retrieval

(OBIR) engine is discussed. Its goal was to yield intuitive results for users by using human-

based techniques. The engine utilizes a unique and efficient set of 15 features: 11 color cate-

gories and 4 texture features, derived from the color correlogram. These features were calcu-

lated for the center object of the images, which was determined by agglomerative merging.

Subsequently, OBIR was applied, using the color and texture features of the center objects on

the images. The final OBIR engine, as well as all intermediate versions, were evaluated in a

CBIR benchmark, consisting of the engine, the Corel image database, and an interface mod-

ule. The texture features proved to be useful in combination with the 11 color categories. In

general, the engine proved to be fast and yields intuitive results for users.

This chapter is almost identical to:

Rikxoort, E. M. van, Broek, E. L. van den, and Schouten, Th. E. (2005). The development

of a human-centered object-based image retrieval engine. In B. J. A. Kröse, H. J. Bos, E. A.

Hendriks, and J. W. J. Heijnsdijk (Eds.), Proceedings of the Eleventh Annual Conference of the

Advanced School for Computing and Imaging, p. 401–408. June 8-10, The Netherlands - Heijen.



12.1 Introduction

12.1 Introduction

Humans differ in all imaginable aspects. This is no different for the characteristics of human

vision. However, “the variance of human vision characteristics is much smaller than the

gap between the characteristics of human vision and computer vision [261]”. The latter is

frequently called the semantic gap in computer vision and content-based image retrieval

(CBIR) [31].

In order to bridge this semantic gap, the usage of appropriate prior knowledge is very

important [234]. Ontologies, user preference profiles, and relevance feedback techniques

were developed to utilize such knowledge. However, such methods require an enormous

effort and consequently can only be applied in a limited domain [327]. We address the

semantic gap from another angle, since we aim at developing techniques that are human-

based and may lead to generic methods that was applied in an unlimited domain.

Our approach to improve the performance of CBIR systems is twofold: (i) we utilize

knowledge concerning human cognition and (ii) we exploit the strength of image processing

techniques. From this perspective, we aim to develop new image processing, classification,

and retrieval techniques, which have low computational costs and provide intuitive results

for users [187].

These techniques were inspired by human visual short-term memory (vSTM). Human

vSTM can encode multiple features only when these features are integrated into a single

object, defined by the same coherent boundary. Moreover, it has a storage limit between

four items [319] and (at least) fourteen items [220]. Intrigued by the efficiency of human

vSTM, we adapted a similar approach for our image analysis techniques.

In sharp contrast with human vSTM, in CBIR the features color and texture are most

often analyzed over the complete images. However, with such an average description of

images, a loss of information is present; i.e., characteristics of parts of images (e.g., objects)

are lost. Moreover, most CBIR image processing schemes use large feature vectors; e.g.,

PBIR-MM (144 features: 108 color and 36 texture related) [155] and ImageRover (768 fea-

tures) [255]. Since we aim to yield intuitive results for users [187] using computationally

cheap methods, we mimicked the characteristics of the vSTM. Subsequently, we do not uti-

lize complex shapes but applied a coarse segmentation algorithm, based on agglomerative

merging [201], as described in Section 12.2. The content of the selected segments of images

are compared with each other, using the highly efficient 11 color quantization scheme (see

Chapters 3 and 5) and the color correlogram (see Chapters 9–11). This setup was tested in

the newly developed CBIR benchmark (see Chapters 6–8) and adapted (see Section 12.4),

resulting in a new CBIR engine. The performance of the final engine was measured (see

Sections 12.5 and 12.6). Finally, in Section 12.7, a brief discussion can be found.
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12 The development of a human-centered object-based image retrieval engine

12.2 Image segmentation

The purpose of image segmentation is to divide an image into segments or regions that are

useful for further processing the image. Many segmentation methods have been developed

for gray level images and were later extended to color images; see Cheng, Jiang, Sung, and

Wang [53] for an overview of them.

12.2.1 Segmentation by agglomerative merging

Segmentation was applied by agglomerative merging, as described by Ojala and

Pietikäinen [201]. Their algorithm is a gray-scale image algorithm but was extended to

color images using a color texture descriptor. The algorithm was applied using the color

correlogram as texture descriptor that was based on the 11 color quantization scheme.

At the initial state of the agglomerative merging algorithm, the images were divided

in sub blocks of size 16 × 16 pixels. At each stage of the merging phase, the pair of blocks

with the lowest merger importance (MI) was merged. This merger importance is defined as

follows:

MI = p × L, (12.1)

where p is the number of pixels in the smaller of the two regions an L is defined as:

L = |I − I

′| =
m−1
∑

i,j=0

|C d̄
i,j(I) − C

d̄
i,j(I

′)|, (12.2)

where m is the number of bins used and C

d
i,j(I) is the color correlogram of image I (see

Equation 9.1), and d̄ is set to 1 (see Section 9.7.5 and 9.7.4 of Chapter 9). The closer L is to

zero, the more similar the texture regions are. The agglomerative merging phase continues

Figure 12.1: The segmentation process, from left to right: The original image, division of the
image in blocks of size 16× 16, the regions after 800 iterations of agglomerative
merging, and the final segments. See Figure B.11 in Appendix B for larger full
color prints of these images.
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until the experimentally determined stopping criterion (Y ), given in Equation 12.3 is met:

MIstop =
MIcur

MImax

< Y, (12.3)

where MIcur is the merger importance for the current best merge, MImax is the largest

merger importance of all preceding merges. The agglomerative merging phase is illustrated

in Figure 12.1.

12.2.2 Parameter determination

In order to use the segmentation algorithm, the parameter Y from Equation 12.3 had to be

determined. This was done using a small test set of texture mosaics. In addition, three

variations of the Merger Importance (MI), as given by Equation 12.1, were evaluated: (i) the

form as given in Equation 12.1, (ii)
√

p instead of p in calculating the MI value, and (iii) not

using the number of pixels at all. The third variant showed to work best. In Figure 12.2 the

behavior of the MIstop value for the three merger importances (MI) are visualized. Using a

sample set, the threshold Y (see Equation 12.3) was experimentally set on 0.6000.

With the introduction of the segmentation algorithm, all ingredients for an image de-

scription are defined: the color correlogram, the 11 color categories, and coarse image seg-

mentation. Next, we will discuss the CBIR benchmark, which includes the CBIR engine,

which uses the image description.

12.3 CBIR benchmark

In order to perform image retrieval using the image features discussed in the previous sec-

tions, a test environment or benchmark has been developed [31]. The three main compo-

nents of this benchmark are: (i) The CBIR engine, (ii) an image database, and (iii) the dy-

namic interface module.

The CBIR engine calculates a feature vector for each image or image segment. Based on

this feature vector, the distance between the query image and all other images is calculated

by means of a distance measure. The result of this CBIR engine is a list of the top 100 most

similar images to the query image. The most important parameters that can be set for the

engine are: the distance measure and the feature vector.

Since the benchmark is modular, an image database of choice can be used. In prin-

ciple, every database can be connected to the benchmark; the most common file-types are

supported.

The dynamic interface module generates an interface in which the results can be pre-

sented. By way of a set of parameters, a range of options can be altered. For example, one
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Figure 12.2: The MIstop value (see Equation 12.3) for the merger importance: (a) MI = p×L

(see Equation 12.1), (b) MI =
√

p × L, and (c) MI = L, of the agglomerative
merging phase, where p is the number of pixels in the smaller of the two regions
and L is a distance measure.

can set the number of images presented for each query, the number of queries to be judged,

and choose whether the presentation of the results is in random order or not.

For the present research, we have chosen as main settings: the intersection distance

measure, the Corel image database, which is a reference database in the field of CBIR, and

a presentation of the top 15 images retrieved in a 5 × 3 matrix, randomly ordered (see Fig-

ures B.12 and B.13 in Appendix B).

The histogram intersection distance (D) of Swain and Ballard [287] is used to calculate

the difference between a query image(q) and a target image (t):

Dq,t =
M−1
∑

m=0

| hq(m) − ht(m) |, (12.4)

where M is the total number of bins, hq is the normalized query histogram, and ht is the

normalized target histogram. This distance measure is developed for histograms but also

works for texture feature vectors [322].

Three different feature vectors were used: (i) the histogram of the 11 color categories

(see Chapters 3 and 5), (ii) the 4 texture features (see Chapter 9), and (iii) the color categories

and texture features combined, resulting in a vector of length 15.

12.4 Phases of development of the CBIR engine

The final CBIR engine was developed in four phases. The final engine of each phases can

be found online; see Table 12.1 for the web-address of each of the 13 benchmarks, including

the final benchmark. The results of each benchmark (in each phase) were judged by two

experts, who each judged 50 random chosen queries on the quality of the retrieved images.
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12.4 Phases of development of the CBIR engine

Table 12.1: The addresses of the 13 different benchmarks, using either color, texture, or a
combination of both features. The * stands for http://eidetic.ai.ru.nl/
egon/. The final benchmark is indicated bold.

Phase Color Texture Color and Texture
1

*/JASP1 */JASP2 */JASP12
2a

*/JASP19c */JASP19t */JASP19
2b

*/JASP29c */JASP29t */JASP29
3 */JASP8catsC

*/JASP8catsCT
4 */JASP8catsC-center */JASP-final

12.4.1 Phase 1

In the first phase of the development of the CBIR engine, the Corel image database (con-

sisting of 60,000 images) was used as a test set. The segmentation algorithm, described in

Section 12.2, was applied on each image in the database. Resulting segments were used for

the CBIR engine if its area was more than or equal to 20% of the total area of the image;

smaller ones were discarded.

People are, in most cases, interested in objects on the image [249]. Multiple objects

can be present, not necessary semantically closely related (e.g., a person standing next to his

car). So, one image can satisfy two unrelated queries (e.g., persons and cars). Hence, we

have chosen to use each segment separately in searching the database of images.

In previous research on using texture based segmentation for CBIR, only one type of

feature vector was chosen for the matching phase [322]. In a first attempt to apprehend the

influence of texture in color image retrieval, three CBIR-engines were developed: a color-

based, a texture-based, and a color&texture-based engine. With this approach we aim to

evaluate the influence of texture features on the retrieval results.

Let us briefly summarize the results, as judged by the experts. The retrieval results of

the color and of the color&texture-based engine were judged as being on an acceptable level.

The results of the texture-based engine were very poor.

The inspection of the results revealed two problems: (i) The areas that exceeded the

threshold of 20% did frequently form the background of the scene presented on the image

and (ii) Frequently, no area exceeded the threshold of 20%. These two problems indicate that

often we were not able to detect objects in the images. Therefore, in Phase 2, we will try an

alternative method for segmentation.

151

http://eidetic.ai.ru.nl/egon/
http://eidetic.ai.ru.nl/egon/
*/JASP1
*/JASP2
*/JASP12
*/JASP19c
*/JASP19t
*/JASP19
*/JASP29c
*/JASP29t
*/JASP29
*/JASP8catsC
*/JASP8catsCT
*/JASP8catsC-center
*/JASP-final


12 The development of a human-centered object-based image retrieval engine

(a) (b) (c)

Figure 12.3: (a) The original image. (b) The 1
9

center grid cell of the image as used for analy-
sis. (c) The 2

9
center grid cells of the image as used for analysis. See Figure B.15

in Appendix B for large color versions of these three images.

12.4.2 Phase 2

The making of most photos is initiated by the interest in certain objects. Therefore, the

photographer will take care that an adequate presentation of the object(s) is present within

the frame of the photo. In most cases, this means the object of interest is placed central in the

photo. Thus, the central position of the image is of the utmost importance. This also holds

for non-photo material: Imagine an image of a painting, of a sculpture, or of a cartoon. Also

for this image material both the photographer as well as the artist who made the original,

will place the object(s) in the center of the image.

Most images will present an object; but what to do with those images that present a

scene (e.g., the sunrise on a photo or a landscape on a painting)? In such a case, the center of

the image will not hold the object of interest but will hold a sample of the scene of interest.

So, in one way or the other, the center of the image contains the most important information.

In order to investigate this hypothesis, we conducted a new research toward CBIR

without image segmentation. We simply selected the center of the image. In order to do

this, a grid of 3 × 3 grid cells was placed over the image. The center of the image was

defined in two ways: (a) the center grid cell (see Figure 12.3b) and (b) both the center grid

cell ans the cell below the center grid cell (see Figure 12.3c).

We were still interested in the influence of color, texture, and their combination (see

Section 12.3). Hence, for each of the center definitions, three CBIR engines were developed,

making a total of six CBIR engines developed in this phase (see also Table 12.1). The six

engines retrieved their images from the complete Corel image database.

Similar to Phase 1, the engines relying on texture features solely performed poor. With
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(a) (b) (c)

Figure 12.4: Segmentation of images with several parameters: (a) The correct parameter for
its class (0.700). (b) The generic parameter as used in phase 1 (0.600). (c) The
parameter of the class cats (0.800). See Figure B.14 in Appendix B for large color
versions of these three images.

that, the evidence was strengthened that texture solely is not useful for CBIR. Hence, in the

next phases of development, texture features on its own will no longer be used. For the

color and color&texture-based engines, the center image approach proved to be successful.

According to the experts, the 1
9

approach performed slightly better than the 2
9

approach.

However, the results were still far from satisfying.

12.4.3 Phase 3

In this Phase, we aim to tackle the problems of segmentation, due to the variety of images

in image classes. In order to tune the segmentation algorithm, the parameter Y (see Equa-

tion 12.3) had to be set separately for each class of images used. Except from tuning the

parameters, the segmentation is similar to the segmentation in Phase 1. In this phase, simi-

larity based on color and a combination of color and texture were used. Both engines were

applied on seven classes of the Corel image database (i.e., cats, dogs, food, flowers, women,

waterfall, and dinos), resulting in a database of 900 images. For each of these seven classes,

the segmentation algorithm was applied using its own parameter.

As expected, tuning the segmentation algorithm for each class separately improved

the retrieval performance substantially. The effect of tuning the segmentation algorithm for

each class separate is illustrated in Figure 12.4. Furthermore, including texture features in

the engine, improved the retrieval, compared to the retrieval results of the engine using

color solely. However, the results were still not fully satisfactory; therefore, in phase 4, a

combination of phase 2 and phase 3 is applied.

153



12 The development of a human-centered object-based image retrieval engine

12.4.4 Phase 4: The final CBIR engine

Since both Phase 2 and Phase 3 provided promising results, we chose to combine both ap-

proaches: both the selection of the center of the image and the tuning of the segmentation

for each class of images are utilized.

The procedure is as follows: (i) the image is segmented, (ii) the center grid cell is se-

lected, and (iii) the region with the largest area within the segmented center grid cell is

selected for analysis. So, for each image only one region represents the complete image. We

assume that this region represents the object, which is the subject of the image. This process

is illustrated in Figure 12.5.

The results of both the color and the color&texture-based engine were promising. The

color&texture-based engine performed better than the engine based on color solely. So,

finally a successful setup was found and the final CBIR-engine was defined. In order to

validate the success of the engines, we wanted to conduct a more thorough analysis of the

retrieval results. This process of validation is described in the next two sections.

12.5 Measuring performance

12.5.1 Recall and precision

Two methods of validation can be applied in CBIR; both adapted from the field of Infor-

mation Retrieval. Given a classified database with labeled images, recall and precision of

the retrieval results can be determined. Recall signifies the percentage of relevant images in

the database that are retrieved in response to the query. Precision is the proportion of the

retrieved images that is relevant to the query.

In this experiment, it is not possible to determine recall of the system because the num-

(a) (b) (c)

Figure 12.5: (a) The original image. (b) The segments in the image and the grid placed on it.
(c) The final region. See Figure B.16 in Appendix B for large color versions of
these figures.
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ber of relevant image are not known beforehand. A similar problem is present when query-

ing the Internet. However, in both cases the precision of the system can still be determined.

In most CBIR research, precision is determined automatically, provided a well anno-

tated database. However, with such an approach a problem arises with the Corel image

database as it is used. The classification is done with only one keyword. As a result separate

categories (i.e., categories labeled by different keywords) can have considerable overlap.

In order to tackle this problem with automatic determination of precision, we utilized

a manual determination of precision. Recently, this approach was successfully applied [31,

187]. Users were asked to judge the retrieved images as either related to the query image or

as not related.

To facilitate the manual determination of precision, the benchmark was utilized. The

users were asked to judge the images retrieved by comparing them to the query image.

The judgment was binary: either an image was judged as appropriate and selected, or an

image was judged as inappropriate and not selected. For each query, the top 15 images, as

determined by the CBIR engine, were presented to the users. To facilitate a rapid judgment

of the query results, the query images were pre-defined; i.e., the user did not have to search

for and select a query image, a random selection of query images was already taken from

the database. For each query, we can then define the precision of the presented images. The

number of 15 retrieved images is a compromise. It is low enough to allow all images of a

query to be presented on one screen in a size that is suitable for judgment. This optimizes

the speed of judgment and thus maximizes the number of queries that can be judged.

12.5.2 Semantic and feature precision

In everyday life, search-engines are judged on their semantic precision; i.e., do the results

have the same meaning as the query? However, two possible problems arise: (i) the query

is ill defined or (ii) the search engine’s algorithm are not able to interpret the query correct.

The interest in this distinction lays in whether the user or the engine can be blamed.

In CBIR the same problems arise. However, since the field of CBIR is young relative to

that of (text-based) Information Retrieval and its techniques are not fully grown, the prob-

lems have a larger impact on the judged semantic precision. However, it is not yet possible

to search on semantics; it is done through the features that correlate strongly with semantic

categories.

Frequently, users do not understand the results a CBIR query provides, when they are

naive to the techniques behind the CBIR engine. For example, the query image can contain

a dog with brown hair. The CBIR engine can return other dogs with brown hair (e.g., see

Figure B.12 in Appendix B), but also cats with a brown coat and women with much brown
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hair. From a semantic point of view, the latter latter two results are incorrect; however, from

a feature point of view, one can perfectly understand them.

We asked a group of eight users, who participated in judging the two CBIR engines, to

judge the engines twice: once on semantic precision and once on precision based on features.

In the next section, we will discuss the results of both of these judgments, for both engines,

in general and for each class separately.

12.6 Results

In Section 12.4.4, the final color and color&texture-based engines were introduced. They

use 11 color and 4 texture features of the center segment of each image. Since one of our

main interests was whether or not texture features contribute to the correct classification

and retrieval of images, both engines had to be judged by users.

In addition, in the previous section we have explained our interest in the difference

between semantic precision and feature-based precision. For the latter judgments, the eight

participating users were instructed to judge the retrieved images on the similarity with the

query image, based on the patterns present (e.g., grass, hair, clouds) and on the color distri-

butions.

These two differentiations result in four different situations in which precision of re-

trieval had to be determined. In total, the eight users judged 640 queries (20 per person per

situation) and so provided a manually determined precision. The precision was determined

over the top 15 matches of the queries, by selecting the images that are considered to be

correctly retrieved (see also Section 12.5.1).

For each situation we determined the average number of selected images and with

that the precision of the engine for each situation (see Table 12.2). Both the precision on

feature level (p < 0.0286) and the precision on semantic level (p < 0.0675) is higher for the

color&texture-based engine (feature: 8.51; semantic: 6.91) than for the color-based engine

(feature: 7.39; semantic: 6.14).

In other words, no matter from which perspective the engines were judged, texture

increased the precision of the retrieval performance. In addition, note that when the en-

gines were judged on semantics significantly less images were selected then when judged

on image features (color: p < 0.0036 and color&texture: p < 0.0016; see Table 12.2).

We will now present the average and standard deviation of the number of selected

images for each of the seven classes separate, for each of the four situations (see Table 12.3).

A large variance between the classes becomes apparent. The average number of images

selected, for the seven classes, in the four situations, ranges from 2.20 (food; color-based,
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12.6 Results

Table 12.2: The average number of images selected when judging
feature and semantic precision. The p values (determined
by a two-tailed Student’s t-test) indicate the difference
between using only color features and using color and
texture features as well as the difference between when
judging feature-based or on semantic precision.

color color-texture p value
feature 7.39 8.51 0.0286
semantic 6.14 6.91 0.0675
p value 0.0036 0.0016

semantic) to 11.89 (dinos; color&texture-based, feature). Additionally, within most classes

a considerable variability is present, as indicated by the standard deviations presented in

Table 12.3.

Please note that all classes used are object-classes, except the class food. This class

represents a concept on another level of semantics. The class food contained, for example,

images of: plates with food on it, a champagne glass, people eating, and a picnic setting

with a boat in a lake as background.

A class as heterogeneous as food, is impossible to classify with a high semantic pre-

cision. This is sustained by the poor results: 2.20 (color) and 2.85 (color& texture) images

selected per query. In addition, the class food was the only class for which the use of texture

substantially reduced the precision of retrieval. For the class flowers texture did decrease

the precision of retrieval as well, but to a lower extent. For all other classes texture proved

to be a useful feature for CBIR.

In general, for most classes an acceptable precision was achieved; for some queries

even excellent (e.g., see Figures B.12 and B.13 in Appendix B). However, the performance

differed considerably between the classes and between the queries within these classes.

Table 12.3: The average number of images selected (i.e., indicating the precision) and
the standard deviation (between brackets), for both engines (color and
color&texture) on both feature and semantic precision.

Class Color-based Color&Texture-based
Feature Semantic Feature Semantic

dinos 10.14 (5.04) 8.90 (4.99) 11.89 (4.11) 11.30 (4.54)
flowers 7.14 (3.92) 4.75 (2.12) 7.05 (5.08) 4.05 (2.11)
food 6.81 (3.11) 2.20 (2.14) 5.56 (4.57) 2.85 (3.36)
women 6.31 (4.16) 5.20 (2.98) 8.40 (5.24) 5.60 (2.64)
waterfall 11.27 (2.64) 7.05 (1.76) 11.46 (2.75) 7.90 (2.22)
cats 6.10 (4.03) 8.10 (3.39) 8.80 (4.94) 8.85 (3.62)
dogs 5.66 (2.54) 6.48 (2.50) 7.45 (5.06) 7.35 (2.57)
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12 The development of a human-centered object-based image retrieval engine

12.7 Discussion

The present chapter provided an overview of the development cycle of new object-based

CBIR techniques. These were evaluated in a CBIR benchmark, which provided the Corel

image database and an interface module, for the engines developed. In order to provide

intuitive results for users based on computationally cheap generic techniques, we mimicked

human visual processing characteristics, utilizing the 11 color categories, four texture fea-

tures derived from the color correlogram, and image segmentation by agglomerative merg-

ing. A central region from the image was chosen, such that it had a high probability to

represent the object, which is the subject of the image. With a feature vector of 15 elements

(i.e., the 11 colors + 4 texture features) and a segmentation algorithm based on the 11 color

categories, the techniques introduced are very cheap.

The final color&texture-based engine proved to have a good precision. However, the

engine is not generic applicable since it needs to be fine-tuned for different classes of images.

This is due to the different background scenes against which the images in the Corel image

database are photographed. So, the amount to which the objects differ in texture from their

background is variable. This variability in texture differences between classes is the reason

the parameters have to be fine-tuned for each object class.

In Section 12.5.2, we discussed the difference between feature and semantic precision.

This is of interest since often the claim is made that a CBIR engine retrieves images based

on semantic properties, while actually retrieval is based on image features that correlate

with semantic categories. Feature precision was significantly higher than semantic precision

for both the color-based engine and the color&texture-based engine. These results indicate

that, when the retrieval results were not semantically relevant, they were intuitive to the

users. Especially, heterogeneous image classes proved to be a problem for semantic preci-

sion, which was illustrated by the class food. We do not expect that images of such classes

can be adequately classified or retrieved from a database using an object-based approach.

This chapter describes the development of an efficient OBIR engine that provides good

retrieval results. Its efficiency is founded on principles inspired by human perception. More-

over, it provides intuitive results for its users. Hence, an important step is made toward

bridging the semantic gap present in CBIR.

In this chapter, OBIR was conducted. However, the objects’ shape could not be uti-

lized, since only coarse segments were extracted. Subsequently, matching was performed

by color and texture features. In the next chapter, a shape extraction method is introduced.

In addition, shape-matching was conducted and OBIR will be done, using color, texture and

shape features. Moreover, a solution concerning the problem of parameter tuning will be

presented.
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Abstract

A new object-based image retrieval (OBIR) scheme is introduced. The images are analyzed

using the recently developed, human-based 11 colors quantization scheme and the color cor-

relogram. Their output served as input for the image segmentation algorithm: agglomerative

merging, which is extended to color images. From the resulting coarse segments, bound-

aries are extracted by pixelwise classification, which are smoothed by erosion and dilation

operators. The resulting features of the extracted shapes, completed the data for a <color,

texture, shape>-vector. Combined with the intersection distance measure, this vector is used

for OBIR, as are its components. Although shape matching by itself provides good results,

the complete vector outperforms its components, with up to 80% precision. Hence, a unique,

excellently performing, fast, on human perception based, OBIR scheme is achieved.

This chapter is an adapted version of:

Broek, E. L. van den, Rikxoort, E. M. van, and Schouten, Th. E. (2005). Human-centered object-

based image retrieval, Lecture Notes in Computer Science (Advances in Pattern Recognition), 3687,

492–501.
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13.1 Introduction

More and more, the world wide web (www), databases, and private collections are searched

for audio, video, and image material. As a consequence, there is a pressing need for efficient,

user-friendly, multimedia retrieval and indexing techniques. However, where speech and

handwriting recognition algorithms are generally applicable, image and video retrieval sys-

tems are only successful in a closed domain. These techniques have in common they are

computational expensive and their results are judged as non-intuitive by its users.

In this chapter, these drawbacks are tackled, for the field to content-based image re-

trieval (CBIR). An object-based approach on CBIR is employed: object-based image retrieval

(OBIR), inspired by the findings of Schomaker, Vuurpijl, and De Leau [249], who showed

that 72% of the people are interested in objects when searching images. Moreover, a human-

centered approach is chosen, based on the 11 color categories used by humans in color pro-

cessing, as described in Chapter 2-5. These 11 color categories are also utilized for texture

analysis, as discussed in Chapter 10, and for image segmentation, done by agglomerative

merging (see Section 12.2.1). From the resulting, coarse image segments, the shape of the

object is derived using pixelwise classification (Section 13.2). Next, erosion and dilation op-

erations are applied on the boundary in order to smooth it. Section 13.3 introduces the shape

matching algorithm. OBIR is conducted using four query schemes (see Section 13.4): two of

them are based on color and texture, one on the object boundaries, and one on their combi-

nation. The results are presented in Section 13.5 followed by a discussion in Section 13.6.

13.2 Feature extraction

As shown in the previous chapters, color and texture are important features in image recog-

nition for both humans and computers. Moreover, the parallel-sequential texture analysis,

as introduced in Chapter 10, illustrated the complementary characteristics of global color

analysis and color induced texture analysis. Therefore, parallel-sequential texture analysis

was also applied in the current study. It utilizes the 11 color categories and a combination of

four texture features derived from the color correlogram, as introduced in Chapters 9.

Shape extraction was conducted in three phases: (i) coarse image segmentation, as

was introduced in the previous chapter (ii) pixelwise classification based on the 11 color cat-

egories, and (iii) smoothing. The coarse image segmentation uses only texture information

to segment the image in texture regions. In the pixelwise classification phase, only color

information is used because the regions are too small for our texture descriptor to be infor-

mative.

The coarse image segmentation is done by agglomerative merging. For the current
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13 Human-centered object-based image retrieval

dataset, the stopping criterion Y for merging is determined to be 0.700. When the coarse

segmentation phase is complete, the center segment of the image is selected to be the object

of interest for OBIR.

After the center object has been identified in the coarse segmentation phase, pixelwise

classification [201] is applied to improve localization of the boundaries of the object. In

pixelwise classification, each pixel on the boundary of the center object is examined. A disk

with radius r is placed over the pixel and the 11 color histogram is calculated for this disk

and all adjacent segments. Next, the distance between the disk and the adjacent segments

is calculated, using the intersection distance measure [31] based on the 11 color histogram.

The pixel is relabeled if the label of the nearest segment is different from the current label of

the pixel. This process, visualized in Figure 13.1, is repeated as long as there are pixels that

are being relabeled.

The radius r of the disk determines how smooth the resulting boundaries are: a small

radius will produce ragged regions, a larger radius will produce smoother boundaries but

may fail in locating the boundaries accurately. In order to tackle these problems we used

a two-step approach: In the first iterations, a relatively small radius of 5 is used, in order

to locate the boundaries correctly. Secondly, a radius of 11 is used to produce more stable

segments.

Although the pixelwise classification phase produces correct object boundaries, the

shapes are smoothed to optimize for the shape matching phase. Smoothing is done us-

ing two fundamental operations: dilation and erosion, as were introduced in Section 4.2 of

Chapter 4 The smoothing is done by an opening operation; i.e., an erosion followed by a

dilation using the same structuring element for both operations. The latter was done with a

square marker (B) of size 5 × 5 pixels. Hence, the process of shape extraction is completed.

The complete process of shape extraction is illustrated in Figure 13.2.

13.3 Shape matching

Shape matching has been approached in various ways. A few of the frequently applied

techniques are: tree pruning, the generalized Hough transform, geometric hashing, the

alignment method, various statistics, deformable templates, relaxation labeling, Fourier and

wavelet transforms, curvature scale space, and classifiers such as neural networks [3].

Recently, Andreou and Sgouros [3] discussed their: “turning function difference”, as

a part of their G Computer Vision library. It is an efficient and effective shape matching

method. However, Schomaker et al. [249] introduced a similar approach five years before.

In the current research, the latter, original approach is adopted. This “outline pattern recog-

nition”, as the authors call it, is based on three feature vectors containing: (i) x and y co-
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marker
histogram

object histogram

background
histogram

Figure 13.1: The process of pixelwise classification illustrated. A pixel at the boundary is se-
lected and a marker is placed over it. Next, the color histogram over this marker
is calculated as well as the histograms of the center segment and the back-
ground. The histogram over the marker is compared to the other histograms
and the pixel is assigned to the area with the most similar histogram (of the
background or the object). A large, full color version of this figure is provided
as Figure B.17 in Appendix B.

ordinates, normalized using the center of gravity of the shape and the standard deviation

of the radii, for all points (x, y) (ii) the running angle (θ) along the edge of the segment

(cos(θ), sin(θ)), which contains more information on the local changes of direction, and (iii)

the histogram of angles in the shape: the probability distribution p(θ) [249].

The algorithm proved to be translation, scale, and rotation invariant. Based on this

algorithm, the outline-based image retrieval system Vind(X) was developed and has been

used successfully since then. Vind(X) relies on outline-outline matching: the user draws an

outline, which is the query. This outline is matched against the outlines of objects on images,

present in its database. Subsequently, the images containing the best matching outlines are

retrieved and shown to the user.

The Vind(X) system provides excellent retrieval results. However, in order to make

its techniques generally applicable, automatic shape extraction techniques had to be devel-

oped. Moreover, these techniques had to be computationally cheap in order to preserve its

fast retrieval, as much as possible. The latter was already achieved by the techniques as

163



13 Human-centered object-based image retrieval

(a) (b) (c)

(d) (e) (f)

Figure 13.2: (a) The original image (b) The coarse segmentation (c) The object after pixelwise
classification (d) The object after erosion (e) The object after dilation (f) The final
shape. See Figure B.1 in Appendix B for large, color versions of these images.

described in the previous sections. In combination with the matching algorithm of Vind(X),

unsupervised OBIR was applied.

13.4 Method

In Section 13.2, color, texture, and shape features are defined. They are combined and used

in four distinct query schemes for object matching, using four vectors:

1. color and texture (parallel-sequential texture analysis), for object vs complete images

2. color and texture (parallel-sequential texture analysis)

3. shape

4. color and texture (parallel-sequential texture analysis) and shape combined

Feature-based and shape-based image retrieval was employed by two separate re-

trieval engines, connected to the same database, both using the intersection distance mea-

sure for ranking their results. For both engines, the number of retrieved images (n) could

be chosen by the user. All query schemes performed an object - object comparison, except

scheme 1 for which object features are matched with the features of the complete images in

the database. For query scheme 4, for each image its ranks on both engines are summed and

divided by two.
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13.5 Retrieval results

Figure 13.3: Sample images from the database used. See Figure B.19 in Appendix B for large,
color versions of these six sample images.

In total, the database used, consists of 1000 images gathered from the Corel image

database, a reference database for CBIR applications, and from the collection of Fei-Fei [84].

Since we are interested in objects, the six categories chosen represent objects: cats, leaves,

revolvers, motorbikes, pyramids, and dinosaurs.

Adopted from the field of Information Retrieval, the performance of CBIR systems

can be determined by the measures recall and precision. Recall signifies the proportion

of relevant images retrieved from the database in response to the query. Precision is the

proportion of retrieved images that is relevant to the query.

13.5 Retrieval results

Recall and precision are calculated for each of the four different query schemes, as defined in

Section 13.4, using a variable number of images retrieved. The precision of the retrieval re-

sults for the four schemes are plotted in Figure 13.4(a), for 5–25 images retrieved. The recall

of the retrieval results for the four schemes are plotted in Figure 13.4(b), for the complete

dataset. All four schemes performed well, as shown in Figure 13.4(a) and 13.4(b). How-

ever, note that with the combined approach, four of the top five images are relevant; i.e., an

average precision of 80% was achieved. Moreover, the recall achieved with the combined

approach converges much faster to 100% than with the other approaches.
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Figure 13.4: Average precision (a) and recall (b) of retrieval, with global and local
color&texture features, outline of extracted objects from images, and their com-
bination.
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13.6 Discussion

The rationale of the CBIR approach presented in this chapter is that it be human centered.

This is founded on two principles: (i) CBIR should be object-based and (ii) it should utilize

the 11 color categories, as used by humans in color processing [31]. Both principles con-

tribute to efficient CBIR, providing intuitive results for users. It was shown that the 11 color

categories work well for describing color distributions (see Chapter 2), for the extraction of

texture descriptors (see Chapter 9), and for object segmentation (see the previous chapter),

as illustrated by the recall and precision of the retrieval results.

The success of matching the 2D shapes of segmented objects with each other is strik-

ing. This can, at least partly, be explained by the fact that “photographers generate a lim-

ited number of ‘canonical views’ on objects, according to perceptual and artistic rules” [249].

Moreover, even in the most recent research still (computationally expensive) gray-scale tech-

niques are applied [260]. In contrast, we are able to extract shapes from color images. This

is very important, since most of the image material available on the www and in databases

is color.

In contrast with the reality on the www, the images in our database all contain im-

ages of objects against a rather uniform background, as illustrated in Figure 13.3. With our

database, a first step is made toward processing real world images, where in comparable,

recent work [91], object images are used that lack a background.

Despite the success of the current approach on real world images, it also has some

drawbacks. First, it should be noted that the number of categories and its members were

limited and follow-up research should be conducted with a larger database, incorporating

a large number of categories. Second, in further developing the engine, the segmentation

parameter should be set dynamically; i.e., setting the parameter to a minimum value and

resetting it dynamically during the merging phase, based on the texture differences between

the remaining blocks. This would obviate the current dependency on a good pre-defined

parameter setting. Third, the ultimate goal would be to identify all objects in an image,

instead of one, as is currently the case. Fourth, we expect that the use of artificial classifiers

can improve the results, compared to the distance measures, used in the current research.

When these drawbacks have been overcome, the resulting CBIR engine can be applied to

real-world images instead of only to object-classes.

In this chapter, a highly efficient scheme for the extraction of color, texture, and shape

features is introduced. Combined with the intersection distance measure, it forms the basis

of a unique, good performing, fast object-based CBIR (OBIR) engine, which provides results

intuitive for its users.
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14 Epilogue

As a result of the expanding amount of digital image material, the need for content-based

image retrieval (CBIR) emerged. However, in developing CBIR-techniques seldomly the

user and his characteristics were taken into account and, subsequently, limitations of mere

technical solutions became apparent (see Chapter 1). Furthermore, the importance of these

technical solutions is eminent since we have still a long way to travel before understanding

man (i.e., the user). This thesis made an attempt to exploit knowledge concerning human

color perception in image processing algorithms and, in parallel, improve the existing image

processing algorithms. Hereby, the human was constantly taken into the loop.

We started with fundamental research toward human color processing (see Chapter 3).

This resulted in a unique color space segmentation, driven by experimental data concerning

the 11 color categories, known to be used by humans since half a century [40, 41]. For the

computation of the color categories, the new Fast Exact Euclidean Distance (FEED) trans-

form was introduced (see Chapter 4 and 5 and Appendix C), the fastest exact Euclidean

distance transform available. This color space segmentation can function as a highly effi-

cient, human-based, color quantization scheme, as was illustrated in Chapters 7 and 8.

With respect to texture analysis techniques, mostly color is ignored [35, 36]. Subse-

quently, problems can arise since two distinct colors can have the same intensity. When an

image consisting such colors is converted to a gray-scale image, compounds of the image

will merge (e.g., object and background can become one). After a comparison of several tex-

ture analysis techniques, we developed a new, parallel-sequential texture analysis approach,

with up to 96% correct classification performance (see Chapter 10). Moreover, in the research

“mimicking human texture classification”, artificial and human texture classification were

compared to each other (see Chapter 11), in a unique experimental setup.

Using the 11 color categories and the texture analysis scheme developed, coarse image

segmentation was conducted (Chapter 12) and subsequently, exact shapes were extracted

by pixelwise classification, followed by smoothing operators (Chapter 13). The shapes ex-

tracted were analyzed using the Vind(X) engine. With that, for all three features (i.e., color,

texture, and shape), human-based techniques have been developed to extract them from

unannotated image material. Using these techniques, object-based image retrieval was con-

ducted (see Chapters 12 and 13), with excellent results.

During several phases of the research, the feature extraction techniques were tested

in a newly developed, online CBIR benchmark (Chapters 6, 7, and 8). Object-based image

retrieval, exploiting color, texture, and shape features, resulted in a high retrieval precision

of up to 80% (Chapter 13). Hence, a human-based, computationally very efficient, object-

based image retrieval engine was launched.

Each chapter was equipped with its own discussion concerning the research presented

in that chapter. Therefore, this epilogue provides three general issues concerning CBIR and

sketches follow-up research, before closing with a general conclusion. We discuss three
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topics only touched or even ignored so far: (i) intelligent CBIR or “when and why CBIR”,

concerning the (dis)use of CBIR, (ii) issues concerning user interfaces (UIs) for CBIR systems;

the research conducted with respect to this topic was omitted from this thesis for reasons of

conciseness, and (iii) gray-scale image retrieval.

14.1 Intelligent Content-Based Image Retrieval

In the general introduction (Chapter 1), we have defined intelligent CBIR as CBIR that uti-

lizes knowledge concerning human cognitive abilities. On the one hand, this should facil-

itate in providing intuitive results for users and, on the other hand, this should result in

efficient image analysis schemes.

However, intelligent CBIR can also be approached from another point of view: the

integration of Information Retrieval (IR) and CBIR techniques. From this moment on, we

will denote the integration of IR and CBIR as iCBIR, where the ‘i’ is derived from intelligent.

Modern search engines like Google illustrate that “Classic IR methods are fast and

reliable when images are well-named or annotated. [42]” However, “keywords have become

a serious constraint in searching non-textual media. Search engines that provide facilities

to search pictures (e.g., AltaVista and Google) usually link to specialized, closed, image

databases. The results, however, are in no way parallel to the success of text retrieval [115].”

Moreover, it is evident that they are incapable of searching in unannotated image collections.

CBIR [235, 270] methods are capable of searching in such collections. [42]

14.1.1 Levels of image queries

Three levels of abstraction can be distinguished with image queries [117]:

1. Primitive features; i.e., color, texture, and shape

2. Derived features:

(a) type of objects

(b) individual objects / persons

3. Abstract attributes:

(a) names of events or types of activity

(b) emotional or religious significance

The higher the level of abstraction, the more problems CBIR systems will encounter in sat-

isfying the user needs.
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In general, CBIR techniques excel in deriving primitive features from image material.

However, since not all techniques applied are intuitive for humans, the results achieved

with them are not either. Nevertheless, most CBIR systems fully rely on image retrieval

using primitive features.

Types or classes of objects are defined as such because they share common characteris-

tics. Often these characteristics can be pinpointed, using primitive features. However, more

often problems emerge in defining the features of a prototype of a certain type (e.g., Ferrari,

politicians). More general types of objects, can be defined by prototypes; e.g., cars, humans.

In contrast, more specific types of objects (e.g., Ferrari F40, Balkenende) are impossible to

describe using primitive features. Only up to a restricted level of complexity object search

can be done; e.g., face recognition [13, 17, 152, 212]. In general, with such queries one still

relies on text-based methods. For example, when searching for photos of particular objects

(e.g., the “Kronenburger Park, Nijmegen, The Netherlands”) by keywords, or to search for

photos of a particular class of objects (e.g., vegetables), by browsing catalogs. In contrast,

with general object or scene queries (e.g., when searching photos of “sunsets”, “landscapes”,

and “red cars”) one can conveniently rely on CBIR methods.

The highest level of abstraction is found with names of events or types of activity and

with emotional or religious significance. It is easily imaginable that such categories of photos

are not suitable for CBIR methods. For instance, impressionist or abstract paintings are hard

to classify. More important than color, texture, and shape characteristics of the painting, is a

painting’s expression and how it is experienced by its viewers. For now, such a description

is far out of the reach of CBIR techniques.

What can be done using primitive image features is deriving the style of paintings

(e.g., the period in which they were made) [33, 34, 111], determine the painter who made

them [33, 34, 111], and verify whether or not they are original works [74, 164, 282]. Then,

based on these characteristics of the content of art objects, these objects can be classified.

These classifications can even be connected to emotional expressions accompanying the

classes of paintings. Using relevance feedback and intelligent (learning) algorithms (e.g.,

artificial neural networks), such classes can be annotated.

In general, on the one hand, one can state that text-based image retrieval methods can

be used to overcome the limitations of CBIR methods. On the other hand, CBIR methods

can assist human annotators in their task of annotating image databases. For example, first,

automatic catalogs of image databases can be generated, using CBIR methods; second, users

can refine the coarse classification made by the CBIR methods.

So far, we held out a prospect of the combination of both CBIR and text-based im-

age retrieval. This is in line with the suggestions of Lai, Chang, Chang, Cheng, and Cran-

dell [155]: “For most users, articulating a content-based query using these low-level fea-

tures can be non-intuitive and difficult. Many users prefer to using keywords to conduct
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searches. We believe that a keyword- and content-based combined approach can benefit

from the strengths of these two paradigms.” Currently, the NWO ToKeN-project VindIT

employs the exploration of this combination [323]. The VindIT project aims to extract ad-

ditional information coming forth from the combination of text and content-based features,

instead of merely combining both features. At the end of the 90s, the first results of such an

approach already yielded promising results [49]. Hence, with a successful combination of

IR and CBIR, truly intelligent CBIR can be conducted. However, an even higher increase in

performance may be gained by facilitating a proper human-computer interaction. Since the

intermediate between user and system is the user interface (UI), these UIs should be a topic

of research on their own, within the field of CBIR.

14.2 CBIR User Interfaces (UIs)

A CBIR system can be described by three compounds: (i) a query definition interface, (ii)

a search engine (and database), and (iii) the presentation of the retrieval results. For both

the first component and the third component, a proper UI is of the utmost importance. Van

den Broek, Vuurpijl, Kisters, and Von Schmid [42] were the first “to conduct a review on ten

online CBIR engines, emphasizing interface aspects and judging human-computer interac-

tion.” Two years later, Van den Broek, Kisters, and Vuurpijl [29] still had to conclude that

“no extensive review on user-interfaces of CBIR systems is present today.” Existing CBIR

reviews, such as that of Gevers and Smeulders [90], Venters and Cooper [305], Veltman and

Tanase [303], and Veltkamp, Burkhardt, and Kriegel [302], emphasize the various image re-

trieval techniques, but not their interfaces. Others, such as Steiner [283], only briefly discuss

the usability of 36 freely available web based color selectors, in a non-CBIR setting. Thus,

we may conclude that the role of UIs in CBIR is underexposed. However, the UIs are the

interfaces between the CBIR engine and its users and should fit the users needs. The next

subsections describe all components of the UI needed to define a query and of the UI that

present the results.

14.2.1 CBIR color selectors

For specifying the color of a CBIR query, a color selector is needed. Most CBIR color selectors

evolved from copies of interfaces in graphics applications. Color selectors in the graphics

industry were present, years before the first CBIR engine was born. However, color selectors

for the graphics industry do have other demands than those for CBIR [42]; e.g., subtle level

crossings do not have to be made for CBIR, but are custom in graphics design. [29]

Van den Broek, Kisters, and Vuurpijl [29] mentioned three considerations in the design

of a CBIR color-selection UIs:
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1. Human color memory is poor, it stores color in only 11 categories.

2. The more colors are present, the harder the selection is: both from perceptual and

motor point of view.

3. Color-selectors for graphic design and CBIR systems cannot be interchanged.

Based on these considerations, a prototype CBIR color selector was developed [29, 42].

It was combined with a sketchpad for shape-based image retrieval [249], taken from the

Vind(x) system [308] (see 14.2.3).

14.2.2 Defining texture

Color can be selected from a color selector. How to design such a selector is far from trivial

but is possible, as is shown in many applications available today. However, an even more

challenging issue is how users should define texture. As Celebi and Alpkoçak [50] already

noted: “In forming an expressive query for texture, it is quite unrealistic to expect the user

to draw the texture (s)he wants.”

Two alternatives are possible for drawing texture: A palette of textures can be used,

which facilitates texture-by-example querying or the option to textually describe texture

can be provided. Perhaps this would be possible when using a set of restricted keywords

with which textures can be described. For the latter purpose, the three main characteristics

(i.e., repetivity, contrast, and coarseness) as denoted by Rao and Lohse [218] could be used.

However, the descriptions and their interpretation would be subject to subjective judgments

and the limitations of human cognition. So, texture description by text is hard, if possible at

all. This leaves one UI that is feasible for defining texture: the palette of textures.

14.2.3 Sketching

Shape definition by sketching is used in the Vind(X) system and demonstrated to be useful.

However, drawing with a mouse is very hard. Making drawings by use of pen and tablet is

easier but, for untrained users, still very hard. Moreover, the query-by-sketch paradigm is

not used outside a limited database. So, is this paradigm useful in a less restricted domain?

As shown in Vuurpijl, Schomaker, and Van den Broek [308], the quality of drawings,

and with that their usability, differs substantially. Moreover, most users are not equipped

with sufficient drawing techniques to draw canonical views of images. Figure 14.1 presents

drawings of users as collected and presented in [308], which are all drawings of objects (i.e.,

humans, horse, table, and tree) as seen from their front or side. Since most photographers

take photos of objects from a canonical view [18, 246, 249, 291], this limits the mapping

between segmented shapes from photos and the sketches as provided by users.
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To summarize, the use of color for query-by-memory seems feasible. Texture can prob-

ably not be employed in query-by-memory settings. Sketch (or shape) based retrieval can be

performed. However, its use has not been demonstrated on a large database, with various

types of images.

14.2.4 Shape and color

In the field of CBIR, the relation between color and shape has received little attention [42];

this is no different for the current thesis. However, this thesis has shown that this relation is

present and is of importance. In Chapters 9–11, it was proved that color (C) defines texture

(T ); subsequently, in Chapters 12–13, texture (T ) on its turn is exploited for image segmen-

tation purposes and for shape (S) extraction. Hence, C → T , T → S implies C → S, where

→ is defined as: “is used to extract”. This section discusses this direct relation between color

and shape.

Color and shape features were combined in the design of a query-by-memory CBIR

interface (see [42]; this research was not included in this thesis). This combination was based

on findings, which state that shape and color influence each other. Their relation is twofold:

(i) color influences human object recognition and (ii) the ’shape category’ of an object may

influence the perceived color of it. The influence of color perception on object recognition is

described by Goldstone [93]. In his article “Effects of categorization on color perception”, he

states that: “high-level cognitive processes do not simply operate on fixed perceptual inputs;

high level processes may also create lower level percepts”. Seen from this perspective, it can

be stated that C ⇔ T , T ⇔ S and, subsequently, C ⇔ S, where ⇔ is defined as: “influence

each other”.

The relation between shape and perceived color is also observed by Sacks [239] who

describes the horror people experience when perceiving objects, after they lost their ability to

see color. Meadow [180] described the disabilities his patients had in distinguishing between

objects, due to the loss of the ability of seeing color. He further notes that these problems are

especially important for the recognition of those objects that rely on color as a distinguishing

mark (cf. an orange and a grapefruit). So, in both the design of CBIR engines as well as for

the CBIR query interfaces, this relation should be taken into account.

In order to conduct research toward (CBIR) UI design, recently an experimental envi-

ronment was developed in which UIs can be tested. This provides the means for recording

all user behavior for multiple user interfaces and stimuli, within an experimentally con-

trolled design. Currently, two large scale experiments are prepared in which five color se-

lection UIs will be tested (Color-Selection User Interface Testing (C-SUIT)), part of the project

Scientific User Interface Testing (SUIT) [32]. In time, these experiments can be expected to

result in guidelines for (CBIR) UIs.
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Figure 14.1: A selection of sketches drawn, as presented in Vuurpijl, Schomaker, and Van
den Broek [308]. Participants were asked to draw humans, horses, tables, and
trees. Note that most of these sketches provide the frontal or side view of the
objects.
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14.2.5 Presentation of CBIR results

Not only for query definition purposes but also for the presentation of the CBIR retrieval re-

sults an UI is needed. This is of the utmost importance since people visually browse through

these results [27]. However, until now there is a lack of fundamental research concerning the

presentation of the results of a CBIR query. De Greef and Van Eijk [72] are an exception with

their research toward “Visually searching a large image database”. They found that “man-

ual browsing was more effective but less efficient than computer controlled browsing. [27]”

“A grid of 9 images per screen was found optimal for visualizing an image collection. In

addition, they found that a difference in size between the (real-size) image (e.g., a painting)

that was seen and its thumbnail version, as it is available in the image database, does not

hinder recognition. [27]

Please note that these findings were fully utilized within the CBIR benchmark, as in-

troduced in Chapter 6. With the design of a UI that presents the query results of the CBIR

engine (running within the framework of the benchmark), the advice of Montfort et al. [72]

was respected. We choose for manual browsing, used scaled images, and presented only 15

retrieved images per screen.

14.3 What to do without color?

Gray-scale image retrieval

This research pursues CBIR methods for color images. However, a second category ex-

ists, that of gray-scale images. Although in this thesis only briefly touched for texture

analysis, this category of images is also worth our attention. Gray-scale images are used

in a range of professional settings; e.g., medical applications (see Section 1.3.2.B in Chap-

ter 1), fingerprints [152, 174], optical character recognition (OCR), and handwriting recogni-

tion [195, 250].

Two types of gray-scale images should be distinguished: (i) Original black-and-white

photos and (ii) Color images that are transformed to gray-scale images. An example of the

first type is the Early Photography 1893–1960 collection [293] of The Rijksmuseum, the Lei-

den Print Room, and other Dutch, public collections. The second type occurs, for example,

to reduce publishing costs (e.g., as is done for this thesis).

In order to determine the amount of lost information (if any) with the transform, Wang

and Bovik [311] even introduced a numerical measure for gray-scale images: the “universal

image quality index”. Recently, Wang, Bovik, Sheikh, and Simonelli [312] generalized the

measure to the “structural similarity index”.

Next to old black-and-white images, up till now, professional photographers make
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black-and-white images. They usually apply filters on gray (or brown) level photos to en-

hance their contrast; most used are orange and red filters (e.g., they can produce dramat-

ically darkened skies). Subsequently, their quantized gray level representation is adapted.

This emphasizes that, when applying CBIR methods on collections of gray-scale images,

this issue should not be ignored. Hence, specialized gray level CBIR methods should be

developed for this category of images. This was already proposed by Niblack et al. [194] in

their “Updates to the QBIC system”. However, their paper does not discuss the details of

their work.

14.4 Future work

The CBIR techniques, as presented in this thesis, should be plugged into a general frame-

work from which an online CBIR system can be developed. The benchmark, as introduced

in Chapter 6, provides an excellent foundation for the envisioned CBIR system. It should

be extended with a query definition interface, both for query-by-memory and query-by-

example. In addition, its engine should be adapted so that it can incorporate several image

processing schemes, which can be combined in any way preferred. Moreover, gray-scale

image processing schemes should be developed and included in the CBIR system.

In a second phase of research, IR techniques should be incorporated. The combined

force of IR and CBIR techniques would make the system usable in large and possibly even

unrestricted domains. Only such a system can, in potential, be exploited in a commercial

setting for image retrieval on the WWW. A CBIR system solely can be used in several pro-

fessional settings as well as for managing photo-albums of customers.

The research as done within the project SUIT [32] will (in time) provide the guidelines

to improve the UI for both the definition of the query as for the presentation of its results.

However, the CBIR system can be further adapted to the individual user, by making use of

relevance feedback [307]. Already in the 90s, a few researchers suggested to use relevance

feedback in CBIR [63, 237, 280]. In the last five years, this advice was reinforced by multiple

researchers [56, 92, 145, 154, 171, 326]. As was shown in the present research, users indeed

vary considerably in their judgments of retrieval results; hence, relevance feedback could

indeed increase user satisfaction substantially.

Next to images, video material can be retrieved based on its content [4, 121, 125, 126,

192, 211, 277, 302, 304]. For this purpose, frequently, so called key frames are selected,

which can be analyzed as images. Henceforth, CBIR techniques can be utilized. Note that

where with CBIR only one image is present, in content-based video retrieval a set of images

describes a part of the video. In addition, note that, even more than with CBIR, content-

based video retrieval suffers from time, computational, and storage (or space) complexity.
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Therefore, the techniques presented in this thesis may be considered, since they provide a

computational inexpensive and effective alternative.

CBIR and IR techniques can also be applied in a multimedia context. Then, the com-

putational load of the processing schemes is even more important. As already described

in 1994–1996 [108, 109, 196, 247, 248], true multimedia systems should, for example, also

incorporate speech recognition as well as other speech analysis techniques [25, 203, 238].

Moreover, advanced schemes for human-computer interaction are needed to facilitate the

communication between user and system [26, 203, 238, 307].

Frequently, agent technology is suggested for advanced human-computer interac-

tion [24, 26, 134]. Advanced communication is envisioned between (software) agents and

between users and agents, where agents represent their owner [76, 77, 132]. Such an agent

needs a knowledge representation (e.g., an ontology) of the user’s needs [264]; schemes that

facilitate relevance feedback can be considered as such knowledge representation.

Already in 1996, the Profile (A Proactive Information Filter) project [265, 266] started,

which envisioned an active information filtering system for Internet may be viewed as con-

sisting of ‘intelligent agents’ which proactively, and usually autonomously, will serve the

user. Over the years, the complexity of this aim came apparent. For example, to satisfy this

aim, users have to trust their (software) agents [131, 170]. This can only be accomplished

when these agents have a high enough level of autonomy and are able to reason by assump-

tion [133]. When all these premises are satisfied then and only then, a first step is made

toward true artificial vision and subsequently, intelligent CBIR, as meant in Chapter 1.

14.5 Conclusions

Most CBIR research focuses on the utilization of advanced (computationally expensive) al-

gorithms. An important constraint for CBIR is the complexity of the algorithm chosen. The

principles based on which humans process images are mostly ignored. On the one hand,

this thesis did discuss and improve algorithms. On the other hand, human cognition was

its foundation. Moreover, since humans are the users of CBIR systems and with that judge

them, their (dis)abilities should be taken into account [117].

Each of the three features used for CBIR (i.e., color, texture, and shape), were devel-

oped from a human-centered perspective, where in parallel improvements to algorithms

were an issue. The 11 color categories, as used by humans in processing color, function as

the fundament for color analysis but also for texture and shape analysis. The texture anal-

ysis method developed, utilizes two intuitive features: the color histogram and the color

correlogram. In addition, human and artificial texture classification were compared exper-

imentally. The coarse segmentation and the subsequent shape extraction were founded on

180



14.5 Conclusions

the 11 color categories and the intuitive texture descriptors.

The utilization of color, texture, and shape enabled us to perform object-based image

retrieval. This brings us to the concept on which the Vind(X) system was founded, which

utilizes outline-outline matching. Where Vind(X) fully relied on its database of manually

annotated outlines, the techniques introduced in this thesis provide the means to extract

these automatically.

So, all ingredients for a human-centered, computationally efficient CBIR engine have

been developed. Moreover, a newly developed online CBIR benchmark was introduced,

which provides the means for the evaluation of CBIR techniques by its users. Most impor-

tant, a new style of research was introduced, which integrates fundamental research, the de-

velopment of algorithms, thorough evaluations, always taking the human in the loop, with

the world as research laboratory. This approach yields both new, efficient image process-

ing and CBIR techniques and can be considered an important step in demystifying human

perception; consequently, an important step has been taken in bridging the semantic gap in

CBIR.
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Table A.1: R,G,B-markpoints for a Color LookUp Table (CLUT) independent of the under-
lying cognitive task and the points that were different categorized in the color
discrimination experiment and in the color memory experiment. Note that this
table is spread over two pages.

Color According to Discrimination and Memory experiment Discrimination Memory
blue 000,000,051 000,000,102 000,000,153 000,000,204 000,000,255 051,204,153 000,051,051

000,051,102 000,051,153 000,051,204 000,051,255 000,102,102 153,000,255 051,000,051
000,102,153 000,102,204 000,102,255 000,153,153 000,153,204 153,051,255
000,153,255 000,204,204 000,204,255 000,255,204 000,255,255
051,000,102 051,000,153 051,000,204 051,000,255 051,051,102
051,051,153 051,051,204 051,051,255 051,102,102 051,102,153
051,102,204 051,102,255 051,153,153 051,153,204 051,153,255
051,204,204 051,204,255 051,255,204 051,255,255 102,000,204
102,000,255 102,051,204 102,051,255 102,102,153 102,102,204
102,102,255 102,153,153 102,153,204 102,153,255 102,204,204
102,204,255 102,255,204 102,255,255 153,102,255 153,153,204
153,153,255 153,204,204 153,204,255 153,255,204 153,255,255
204,204,255 204,255,255

brown 051,000,000 102,000,000 102,051,000 102,051,051 153,000,000 102,000,051 102,102,051
153,051,000 153,051,051 153,102,000 153,102,051 153,102,102 153,000,051 153,153,051
204,000,051 204,051,000 204,102,000 204,102,051 204,102,102 153,000,051 153,153,051
204,153,102 153,000,051 153,153,102

153,000,051 204,153,000
153,051,102 204,153,051
204,051,051 255,204,153
204,051,102 102,102,153
255,102,051
255,102,102
255,153,102

yellow 153,153,000 153,153,051 204,204,000 204,204,051 204,204,102 153,153,102 204,153,000
204,204,051 204,204,102 204,204,153 204,255,000 204,255,051 153,204,000 204,153,051
204,255,102 204,255,153 255,204,000 255,204,051 255,204,102 153,255,000 255,204,153
255,255,000 255,255,051 255,255,102 255,255,153 255,255,204 153,204,000

153,255,000
153,255,051

gray 000,051,051 051,051,051 102,102,102 102,153,153 153,153,102 102,102,153
153,153,153 153,153,204 153,204,204 204,204,153 204,204,204

green 000,051,000 000,051,051 000,102,000 000,102,051 000,102,102 204,204,000
000,153,000 000,153,051 000,153,102 000,153,153 000,204,000 204,204,051
000,204,051 000,204,102 000,204,153 000,255,000 000,255,051
000,255,102 000,255,153 000,255,204 051,051,000 051,102,000
051,102,051 051,102,102 051,153,000 051,153,051 051,153,102
051,153,153 051,204,000 051,204,051 051,204,102 051,204,153
051,255,000 051,255,051 051,255,102 051,255,153 051,255,204
102,102,000 102,102,051 102,153,000 102,153,051 102,153,102
102,153,153 102,204,000 102,204,051 102,204,102 102,204,153
102,255,000 102,255,051 102,255,102 102,255,153 102,255,204
153,153,000 153,153,051 153,153,102 153,204,000 153,204,051
153,204,102 153,204,153 153,255,000 153,255,051 153,255,102
153,255,153 153,255,204 204,204,102 204,204,153 204,255,000
204,255,051 204,255,102 204,255,153 204,255,204
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Color According to Discrimination and Memory experiment Discrimination Memory
orange 153,102,000 204,051,000 204,102,000 204,102,051 204,153,000 153,102,051 153,051,000

204,153,051 204,153,102 255,102,000 255,102,051 255,153,000 153,153,051 255,051,000
255,153,051 255,153,102 255,204,000 255,204,051 255,204,102 204,204,000
255,204,153 204,204,102

purple 000,000,051 051,000,051 051,000,102 102,000,051 102,000,102 000,000,102 051,000,153
102,000,153 102,000,204 102,051,102 102,051,153 102,051,204 051,051,102 051,051,102
102,102,153 153,000,051 153,000,102 153,000,153 153,000,204 255,102,153 102,051,051
153,000,255 153,051,102 153,051,153 153,051,204 153,051,255 102,051,255
153,102,153 153,102,204 153,102,255 153,153,204 153,153,255 153,102,102
204,000,102 204,000,153 204,000,204 204,000,255 204,051,102 255,051,102
204,051,153 204,051,204 204,051,255 204,102,153 204,102,204 255,204,255
204,102,255 204,153,204 204,153,255 204,204,255 255,000,102
255,000,153 255,000,204 255,000,255 255,051,153 255,051,204
255,051,255 255,102,204 255,102,255 255,153,255

red 153,000,000 153,000,051 204,000,000 204,000,051 204,051,000 204,000,102 102,000,000
204,051,051 204,051,102 255,000,000 255,000,051 255,000,102 255,000,153 102,000,051
255,051,000 255,051,051 255,051,102 255,102,102 255,102,051 153,051,051

153,102,102
204,102,102

pink 153,102,102 204,000,102 204,000,153 204,051,102 204,051,153 204,153,255 153,000,102
204,051,204 204,102,102 204,102,153 204,102,204 204,153,153 153,051,102
204,153,204 255,000,102 255,000,153 255,000,204 255,000,255 204,000,051
255,051,102 255,051,153 255,051,204 255,051,255 255,102,102 204,000,204
255,102,153 255,102,204 255,102,255 255,153,102 255,153,153 204,051,051
255,153,204 255,153,255 255,204,153 255,204,204 255,204,255 255,000,051

255,051,051
white 204,204,153 204,204,204 204,255,204 204,255,255 255,255,204 153,204,204

255,255,255 153,255,204
153,255,255
204,204,255

black 000,000,000 000,000,051 051,000,000 051,051,051 000,051,051
051,051,000
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Figure B.1: From top to bottom: The original photo using 2563 colors, quantized in 8 bins,
and quantized in 64 bins, using RGB color space.
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B Color figures

Figure B.2: Screendump of the user interface of the color memory experiment. The buttons
were gray and labeled with a color name. So, color classification had to be em-
ployed based on color memory.

Figure B.3: Screendump of the user interface of the color discrimination experiment. The
buttons were colored and did not have a label. Hence, the participants were able
to compare the color of the stimulus with the colors of the buttons; a process of
color discrimination.
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(a) (b)

Figure B.4: The two dimensional HI plane with the calculated chromatic borders. (a) shows
the non-fuzzy chromatic CLUT markers and (b) shows the fuzzy chromatic
CLUT markers. Each dot represents a W3C web-safe color.
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Figure B.5: (a) shows an image from which a co-occurrence matrix and features are calcu-
lated. In (b) a visual rendering is plotted of the co-occurrence matrix of image
(a).
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Figure B.6: The interface of a query such as was presented to the subjects. They were asked to select the best matching
images and to rate their satisfaction.
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Figure B.7: The interface of a query as was presented to the participants. They were asked to select the best matching
images and to rate their overall satisfaction, with respect to their color distribution only.
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Figure B.8: An overview of all 180 images (the color version) used in the clustering experiments with
both human participants and the automatic classifier.
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Figure B.9: Above: The start condition of the experiment: one pile of 180 images. Below: An
example of a final result of an experiment: six clusters of images.
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Figure B.10: An example screen from the benchmark used to let users judge the automatic clusters.
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Figure B.11: The segmentation process, from left to right: The original image, division of the
image in blocks of size 16× 16, the regions after 800 iterations of agglomerative
merging, and the final segments.
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Figure B.12: A query image with retrieval results when using color and texture features for matching.
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Figure B.13: A query image with retrieval results when using color and texture features for matching.
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(a) (b) (c)

Figure B.14: Segmentation of images with several parameters: (a) The correct parameter for
its class (0.700). (b) The generic parameter as used in phase 1 (0.600). (c) The
parameter of the class cats (0.800).

(a) (b) (c)

Figure B.15: (a) The original image. (b) The 1
9

center grid cell of the image as used for analy-
sis. (c) The 2

9
center grid cells of the image as used for analysis.
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(a) (b)

(c) (d)

Figure B.16: (a) The original image. (b) The segments in the image (c) The grid. (d) The final region.
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marker
histogram

object histogram

background
histogram

Figure B.17: The process of pixelwise classification illustrated. A pixel at the boundary is se-
lected and a marker is placed over it. Next, the color histogram over this marker
is calculated as well as the histograms of the center segment and the back-
ground. The histogram over the marker is compared to the other histograms
and the pixel is assigned to the area with the most similar histogram (of the
background or the object).
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(a) (b)

(c) (d)

(e) (f)

Figure B.18: (a) The original image (b) The coarse segmentation (c) The object after pixelwise
classification (d) The object after erosion (e) The object after dilation (f) The final
shape.
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(a) (b)

(c) (d)

(e) (f)

Figure B.19: Sample images from the database used.
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Abstract

Fast Exact Euclidean Distance (FEED) transformation is introduced, starting from the inverse

of the distance transformation. The prohibitive computational cost of a naive implementation

of traditional Euclidean Distance Transformation, is tackled by three operations: restriction of

both the number of object pixels and the number of background pixels taken in consideration

and pre-computation of the Euclidean distance. Compared to the Shih and Liu 4-scan method

the FEED algorithm is often faster and is less memory consuming.

This chapter is identical to:

Schouten, Th. E. and Broek, E. L. van den (2004). Fast Exact Euclidean Distance (FEED)

Transformation. In J. Kittler, M. Petrou, and M. Nixon (Eds.), Proceedings of the 17th IEEE

International Conference on Pattern Recognition (ICPR 2004), Vol 3, p. 594-597. August 23-26,

Cambridge - United Kingdom.



C.1 Introduction

C.1 Introduction

A distance transformation [233] (DT) makes an image in which the value of each pixel is its

distance to the set of object pixels O in the original image:

D(p) = min{dist(p, q), q ∈ O} (C.1)

Many algorithms to compute approximations of the Euclidean distance transformation

(EDT) were proposed. Borgefors [21] proposed a chamfer DT using two raster scans on

the image which produces a coarse approximation of the EDT. To get a result that is exact on

most points but can produce small errors on some points, Danielsson [69] used four raster

scans.

To obtain an exact EDT two step methods were proposed. Cuisenaire and Macq [65,

66] first calculated an approximate EDT using ordered propagation by bucket sorting. It

produces a result similar to Danielsson’s. Then, this approximation is improved by using

neighborhoods of increasing size. Shih and Liu [258] started with four scans on the image,

producing a result similar to Danielsson. A look-up table is then constructed containing

all possible locations where an exact result is not produced. Because during the scans the

location of the closest object pixel is stored for each image pixel, the look-up table can be

used to correct the errors. It is claimed that the number of error locations is small.

In contrast with these approaches, we have implemented the EDT starting directly

from the definition in Equation C.1. Or rather its inverse: each object pixel feeds its distance

to all non-object pixel.

C.2 Direct application

In principle for each pixel q in the set of object pixels (O) the Euclidean distance (ED) must

be calculated to each background pixel p. The algorithm then becomes:

initialize D(p) = if (p ∈ O) then 0, else ∞
foreach q ∈ O

foreach p /∈ O

update : D(p) = min(D(p), ED(q, p))

However, this algorithm is extremely time consuming. In principle it can be speeded up by:

• restricting the number of object pixels that have to be considered

• pre-computation of ED(q, p)
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• restricting the number of background pixels that have to be updated for each consid-

ered p

Only the “border” pixels of an object have to be considered. A border pixel is defined

as an object pixel with at least one of its four 4-connected pixels in the background. It can

then be easily proven that the minimal distance from any background pixel to an object, is

the distance from that background pixel to a border pixel of that object.

As the ED is translation invariant, the EDs can be precomputed and stored in a matrix

M(x, y) = ED((x, y), 0). ED(q, p) is then taken as ED(q − p, 0) from the matrix. In principle

the size of the matrix is twice the size of the image in each dimension. If the property

ED((x, y), 0) = ED((|x|, |y|), 0) is used in the updating of D(p), only the positive quadrant

of M is needed. Thus the size of the matrix becomes equal to the image size. Its calculation

can be speeded up using the the fact that ED is symmetric: ED((x, y), 0) = ED((y, x), 0).

If an upper limit of the maximum value of D(p) in an image is known a priori, the size

of M can be decreased to just contain that upper limit. This would increase the speed of

the algorithm. For example, this could be done in a situation where there are fixed objects

present. In addition, D(p) can be calculated for the fixed objects only and can be updated in

a later stage using only the pixels of the moving objects.

The size of the matrix M can also be decreased if one is only interested in distances up

to a certain maximum. For example, in a robot navigation problem where distances above

the maximum give no navigation limitations.

Due to the definition of D(p) the matrix M can be filled with any non-decreasing func-

tion f of ED: f(D(p)) = min(f(D(p)), f(ED(q, p))). For instance, the square of ED allowing

the use of an integer matrix M in the calculation. Or one can truncate the ED to integer

values in M if that is the format in which the final D(p) is stored.

The number of background pixels that have to be updated can be limited: only those

that have an equal or smaller distance to the border pixel B than to an object pixel p (see

Figure C.1a). The equation of the bisection line is: pyy + pxx = (p2
x + p

2
y)/2.

Regarding the speed of the algorithm the problem is that not too much time should be

spend on searching for other object pixels, on the administration of the bisection lines, or on

determining which pixels to update. That is because the update operation is simply a test

followed by one assignment, see the algorithm at the beginning of this section.

C.3 Reducing the number of pixels to update

The search for object pixels p is done on lines through the current border pixel (B) with

certain m = py/px ratio’s. Define m = m1/m2 with m1 and m2 the minimal integers, then
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(a)

(b) (c)

Figure C.1: (a) Principle of limiting the number of background pixels to update. Only the
pixels on and to the left of the line have to be updated. B is the border pixel
under consideration, p is an object pixel. (b) Sizes of each update quadrant and
changes due to a single bisection line and due to a crossing of two bisection lines.
(c) The update process. On each scan line the bisection lines determine a range
of pixels to update.

the equation of the bisection becomes: 2(m1m2y + m

2
2x) = (m2

1 + m

2
2)px. This is of the form:

may+mbx = mcpx with ma, mb and mc integers that depend only on m. For each quadrant for

each m only the object pixel closest to B is relevant, searching along the line can be stopped

as soon as one is found. The bisection line found is then identified with px and the quadrant

number.

To keep track of the update area, the maximum x and y values of each quadrant are

updated (see Figure C.1b). Only pixels inside each square need to be updated, but not all

of them. A bisection line in a quadrant might update these maximum values in this and

two neighboring quadrants, as is indicated with the open arrows in the figure. For example:

maxy1 = min(maxy1, mcpx/ma). The intersection point of two bisection lines in different

quadrant might also give a new maximum value, as indicated with the arrow with the line

on top. The maximum values can be calculated using integers.

The maximum values also determine the distance to search along each line m. For

example, for a line in quadrant 1 at least one of the points (maxx1,maxy1), (0,maxy2), and

(maxx4, 0) must be on or to the right of the bisection line. This gives a maximum value for

px of max(mamaxy1 + mbmaxx1, mamaxy4,mbmaxx4)/mc.

Bisection lines closer to the origin B have a larger effect than lines further away. Search-

ing in circular patterns the closest lines are found first, thus less points are checked than

using a radial search. But it requires a more time consuming checking of reaching of limit

values and further bookkeeping than when using a radial search.
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Since in general a number of object points from the same object are close to B, the

radial search is splitted. In a small area around B all the points on a number of radial lines

are checked. If the remaining area (
∑4

i=1 maxximaxyi) is too large, all the radial lines are

checked completely. To increase the speed, not all points on them are checked but a certain

stepping is used.

The final selection of pixels to update is made in the update process (see Figure C.1c).

For each scan line in a quadrant bisection lines in that and neighboring quadrants determine

start and end points, as is indicated with the lines with arrows on both sides. The maximum

values in a quadrant can be at several locations, depending on whether crossing of bisection

lines was taken into account. The crossing of a bisection line in a quadrant with a bisection

line in the next quadrant is found when the minimum value of a scan line is larger than the

maximum value. In that case no further scan lines in that quadrant have to be considered.

A further remark is that points exactly on a bisection line, have only to be updated

once. For this quadrants 1 and 2 are chosen. This can simply be achieved by decreasing

mcpx by 1 for quadrants 3 and 4.

C.4 Test results

As comparison algorithm the four scan method of Shih [258] was chosen (except for their

look-up table correction).

For our FEED method test lines with m’s of 1/4, 1/3, 1/2, 2/3, 3/4, 1, 4/3, 3/2, 2, 3

and 4 and both the vertical and horizontal lines were chosen. The small test area around

each border pixel was set to a square of 17 by 17 pixels and for the larger area a stepping of

8 pixels was used. This was skipped if the update area was already reduced to less than 200

pixels.

Results are presented on four 4096 by 4096 images and their negatives. Two are tests

suggested by Cuisenaire and Macq [65, 66], an image containing a circle with a radius of

2000 pixels and one filled with a line under 20◦. The other two images are filled with a large

number of objects, one of them with situations in which errors in the implementation would

likely show up.

Our implementation was checked on the small images given in reference [65, 66]

and [258] that gives errors in ED in the first steps of the methods in the references, and

was found to give correct results. The results on the test images using the algorithm in

Section C.2 without any speed optimization, provided references for checking the correct

implementation of the optimizations.
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Table C.1: Timing results on eight images, for the Shih and Liu
four scans method [258] and for the Fast Exact Eu-
clidean Distance (FEED) transform.

image Shih and Liu FEED reduced M

line 29.46 s 13.84 s 11.94 s
circle 22.86 s 17.42 s 15.77 s
test-obj 21.84 s 10.47 s 6.72 s
objects 23.39 s 8.15 s 5.52 s
neg line 5.26 s 5.01 s 4.07 s
neg circle 10.85 s 6.15 s 3.84 s
neg test-obj 9.96 s 7.14 s 4.00 s
neg objects 8.51 s 6.11 s 3.80 s

In Table C.1 the execution times on a SUN machine are given for the Shih and Liu

method and for our FEED method with a full size matrix M and with the size of M reduced

to the maximum distance in the image. FEED is up to a factor 3 faster then the Shih and

Liu method and becomes even faster when the maximum distance in the image is known in

advance.

Table C.2 shows some statistics gathered during the execution of our method. It shows

the number of object and border pixels, the average number of tested pixels per border pixel

and the average number of updates per background pixel. Together with Table C.1 it shows

that although the execution time of the Shih and Liu method is proportional to the number

of pixels in the image, in images of given size the execution time is about proportional to the

number of background pixels. That is caused by the fact that during the four scans over the

image, more work is performed on background pixels than on object pixels.

As noted by Cuisenaire and Macq [65, 66] comparing the complexity and computa-

tional costs of EDT algorithms is a complex task. FEED shows a factor 2 less variation in

execution time over the images than the Shih and Liu method, which needs further investi-

gation. Somehow, the work done in the various parts of FEED averages out better than in

the Shih and Liu method.

Shih and Liu argue that the number of pixels with a wrong ED after their four scans

over the image is very small, less than 1%. We found for the circle image that 8.32% and

for the line image that 68.8% of the pixels were wrong. In the line under 20 ◦ image the

conditions under which the four-scans produce a wrong result, occur very often.
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Table C.2: Image statistics: The number of tests done per border pixel and the number of
updates done per background pixel.

image object border tests / updates /
pixels pixels border pixel backgr pixel

line 16756554 4282 5010.6 8.86
circle 12579510 12770 2851.4 13.13
test-obj 13232644 115908 339.5 10.47
objects 14140711 74299 421.5 1.64
neg line 4282 8188 21.6 1.67
neg circle 418136 12766 430.0 4.20
neg test-obj 3528192 127728 110.4 1.48
neg objects 2620125 74586 131.7 1.63

C.5 Discussion

We have developed a Fast Exact Euclidean Distance (FEED) transformation, starting from

the inverse of the distance transformation: each object pixel feeds its distance to all back-

ground pixels. The prohibitive computational cost of a naive implementation of traditional

EDT, is tackled by three operations: restriction of both the number of object pixels and

the number of background pixels taken into consideration and pre-computation of the Eu-

clidean Distance.

The FEED algorithm was tested on 4 images and their negatives. It proved to be up to

3 times faster than the Shih and Liu 4-scan method. The difference is even larger if an upper

bound on the maximum distance is known or if one is not interested in distances larger

than a given maximum. In addition, was measured that the processing time of FEED is less

variable than that of the 4-scan algorithm. Last, FEED needs less memory than the 4-scan

method since it does not have to consider the image matrix twice.

Further research will focus on boosting FEED, design an parallel implementation

(where each processor handles part of the border pixels, then joining of D(p)), and extend

FEED to 3D or higher. So, with FEED no approximations of EDT are needed due to its

computational burden, but both fast and exact EDT can be done. With that a new image

processing algorithm is launched important for many applications in image analysis and

pattern recognition.
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D Summary

Digital media are rapidly replacing their analog counterparts. This development is accom-

panied by (i) the increasing amount of images present on the Internet, (ii) the availability of

the Internet for an increasing number of people, (iii) a decline in digital storage costs, and

(iv) the developments in personal digital video/photo camera’s [30, 31, 126]. In anticipation

of these developments, the fields of computer vision (CV) and content-based image retrieval

(CBIR) evolved rapidly. Driven by a technology push, a range of CV/CBIR techniques were

developed [125, 126]. However, seldomly the user and his characteristics were taken into ac-

count and subsequently, limitations of mere technical solutions became apparent [29, 30, 42].

The NWO ToKeN Eidetic project: Intelligent CBIR, aims to bridge the semantic gap

present in the field of CV/CBIR, with the successful launch of the CBIR system Vind(X) as

its foundation. However, the Vind(X) systems suffers from two drawbacks [38], it depends

on: (i) the cooperative annotation of its users to fill its database of outlines [308] and on (ii)

outline-outline (or shape) matching [38].

To enable a full analysis of image content (e.g., through object recognition), color and

texture analysis has to be done as well as segmentation and shape extraction, to facilitate

shape matching. Since each of these topics is essential for CV/CBIR, each of them was

addressed in the Eidetic research line and will be discussed, before combining them.

Most images present on the Internet and in databases are color images. Moreover, the

analysis of color in the image is not only used for the analysis of color distributions but

is also used in texture analysis, image segmentation, and shape extraction. Hence, color

analysis is of the utmost importance, for bridging the semantic gap [42], since color cap-

tures essential information about our environment [30, 31, 39, 225]. Therefore, we started

with fundamental research toward human color processing [28]. This resulted in a unique

color space segmentation, driven by experimental data concerning the 11 color categories,

known to be used by humans since half a century [40, 41]. This color space segmentation

can function as a highly efficient, human-based, color quantization scheme [30, 40].

Texture is the second feature, widely used for image analysis, CV, and CBIR purposes.

Most texture analysis techniques are intensity-based [35, 36]. However, multiple problems

can arise with texture analysis of color images, when their color is ignored (e.g., two dis-

tinct colors can have the same intensity). Therefore, intensity-based and color induced tex-

ture analysis were compared, using several color spaces and quantization schemes [35, 36].

This resulted in the new, parallel-sequential texture analysis approach with a 96% correct

classification performance [36]. Moreover, in the research line “mimicking human texture

classification”, various texture analysis techniques were compared with human texture clas-

sification [39, 225].

Using the 11 color categories and the parallel-sequential texture analysis scheme,

coarse image segmentation was conducted, the first phase of shape extraction [224]. Next,

the exact shapes were extracted from such coarse segments by pixelwise classification, fol-
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lowed by smoothing operators [38]. The shapes extracted were analyzed using the Vind(X)

engine. With that, for all three features, human-based techniques have been developed to

extract them from not annotated image material. Moreover, the segmentation and shape

extraction enabled us to conduct object-based image retrieval (OBIR) [38].

In order to test the feature extraction techniques, an online CV/CBIR benchmark was

developed [30, 31]. Retrieval was conducted utilizing: (i) color, (ii) texture, (iii) shape, (iv)

color and texture combined, and (v) the three features combined. Object-based image re-

trieval, exploiting color, texture, and shape features, resulted in a retrieval precision up to

80% [38]. Hence, the first human-based, computationally very efficient, OBIR engine was

launched.

In parallel to the research discussed so far, a research line in computational geometry

emerged. Within this line of research the Fast Exact Euclidean Distance (FEED) transform

was developed [254]. FEED was used in [40] for the color space segmentation and exploited

for the Weighted Distance Mapping paradigm [41]. Recently, a parallel implementation

of FEED: timed FEED was launched [253], is FEED applied for robot navigation [253] and

video surveillance [252], and 3D-FEED was developed [251], accompanied by a dimension

independent definition of the algorithm.

242



Samenvatting



This is a translation of the summary that accompanied:

Broek, E. L. van den, Rikxoort E. M. van, Kisters, P. M. F., Schouten, Th. E., and Vuurpijl, L. G.

(2005). Human-centered object-based image retrieval. In C. Klöditz (Ed.), Proceedings of fourth

NWO ToKeN symposium, p. 5. March 18, The Netherlands - Eindhoven.



E Samenvatting

Digitale media vervangen hun analoge tegenhangers in een hoog tempo door: (i) het toen-

emende aantal plaatjes op Internet, (ii) het gebruik van Internet door steeds meer mensen,

(iii) het goedkoper worden van opslagruimte en (iv) de ontwikkelingen op het gebied van

video en fotocamera’s [30, 31, 126]. Zo werd het noodzakelijk te kunnen zoeken naar plaat-

jes, die mogelijk niet zijn beschreven, hetgeen content-based image retrieval (CBIR) wordt

genoemd [125, 126]. Hierbij wordt gezocht met behulp van eigenschappen van de plaatjes

zelf, in plaats van met hun beschrijvingen. Gedreven door de snelle technologische on-

twikkelingen werd een verscheidenheid aan CBIR technieken ontwikkeld. Hierbij werden

zelden de gebruikers of hun eigenschappen in ogenschouw genomen. Ten gevolge hiervan

kwamen de beperkingen van puur technische oplossingen naar voren [29, 30, 42].

Het NWO ToKeN Eidetic project: Intelligent CBIR, heeft als doel CBIR technieken te

ontwikkelen vanuit het perspectief van haar gebruikers. Eidetic werd geı̈nitieerd door de

succesvolle lancering van het CBIR systeem Vind(X). Helaas was Vind(X) beperkt doordat

ze afhankelijk is van de mede-werking van gebruikers om de database met omtrekken te

vullen. Daarnaast worden door Vind(X) enkel omlijningen (of vormen) van objecten in

plaatjes met elkaar vergeleken [38, 308].

Voor volledige analyse van het beeldmateriaal dient kleur en textuuranalyse te wor-

den gedaan evenals segmentatie en vormextractie ten behoeve van het vergelijken van vor-

men van objecten. Daar ieder van deze onderwerpen essentieel zijn voor CBIR, zullen ze

alle worden behandeld binnen de Eidetic onderzoekslijn. We zullen ieder van deze onder-

werpen behandelen alvorens hen te combineren.

De meeste plaatjes op het Internet en in databases zijn kleurenplaatjes. Bovendien

wordt kleuranalyse niet alleen gebruikt bij het bepalen van kleur distributies maar ook

bij textuuranalyse, beeldsegmentatie en vormextractie. Een goede kleuranalyse is dus van

groot belang [30, 31, 39, 42, 225]; daarom is een fundamenteel onderzoek naar menseli-

jke kleurverwerking opgezet [28]. Dit resulteerde in een unieke kleurruimtesegmentatie,

bepaald door de experimentele data betreffende de 11 kleur categorieën, zoals bekend sinds

een halve eeuw [40, 41]. De kleurruimtesegmentatie kan dienen als een zeer efficiënt, op de

mens gebaseerd schema voor kleurkwantisatie [30, 40].

Textuur is de tweede beeld eigenschap die veel gebruikt word bij CBIR doeleinden.

Veel textuuranalysetechnieken zijn op intensiteit/grijswaardes gebaseerd [35, 36]. Indien

kleur genegeerd wordt kunnen er diverse problemen naar voren komen bij textuuranalyse

(bijvoorbeeld: twee verschillende kleuren kunnen dezelfde intensiteit hebben). Daarom

hebben we textuuranalyse gebaseerd op intensiteit en op kleur, gebruikmakend van ver-

schillende kleurruimtes en kwantisatie schema’s, met elkaar vergeleken [35, 36]. Dit resul-

teerde in een nieuwe methode voor textuuranalyse: de parallel-sequentiële aanpak, die be-

wees in 96% van de gevallen textuur correct te classificeren [36]. Daarnaast werden diverse

textuuranalysetechnieken vergeleken met menselijke textuurclassificatie [39, 225].
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Gebruikmakend van de 11 kleur categorieën en de parallel-sequentiële textuuranalyse

werd een groffe beeld segmentatie bewerkstelligd, de eerste fase in het proces van vorm

extractie [224]. Op basis van deze groffe segmenten werden vervolgens de exacte vormen

bepaald door de classificatie van pixels, gevolgd door het afvlakken van de vormen [38].

De geëxtraheerde vormen werden geanalyseerd met behulp van Vind(X). Daarmee zijn

voor alle drie de beeldkenmerken, op de mens gebaseerde technieken ontwikkeld. De seg-

mentatie en vorm extractie maken bovendien objectgebaseerd zoeken naar plaatjes mogelijk

(object-based image retrieval (OBIR)) [38].

Een CBIR benchmark werd ontwikkeld om de nieuw ontwikkelde technieken te kun-

nen testen [30, 31]. In deze benchmark werden de beeld eigenschappen (i) kleur, (ii) textuur,

(iii) vorm, (iv) de combinatie kleur en vorm evenals (v) de combinatie van kleur, textuur en

vorm apart getest. Zo bleek dat OBIR, gebruikmakend van kleur, textuur en vorm, tot 80%

correcte plaatjes vindt [38]. Hiermee is het eerste op de mens gebaseerde, computationeel

zeer efficiënte, OBIR systeem gelanceerd.

Parallel aan het onderzoek besproken tot dusverre, is een onderzoekslijn in de compu-

tationele geometrie ontstaan. Binnen deze lijn van onderzoek is de “Fast Exact Euclidean

Distance (FEED) transform” ontwikkeld [254]. FEED is gebruikt voor kleurruimtesegmen-

tatie [40] en is toegepast voor het “Weighted Distance Mapping” paradigma [41]. Recent

is een parallele implementatie van FEED ontwikkeld [253], is FEED toegepast op robotnav-

igatie [253] en videobewaking [252] en was 3D-FEED ontwikkeld [251] te samen met een

dimensie onafhankelijke definitie van het algoritme.
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F Dankwoord

Nijmegen, 31 juli 2005

In 2000 (Amsterdam/Nijmegen) tijdens de organisatie van de IWFHR VII maakte Louis

kennis met mij. Lambert verliet het NICI snel daarna en vertrok naar het hoge noorden.

Louis nam zijn plaats over en bood mij een plaats als promovendus aan. Louis bedankt

voor de kans, voor het vertrouwen dat je in me hebt gehad en vervolgens voor de vrijheid

die je me hebt gegeven mijn eigen “pad der promotie” te bewandelen.

Begin 2003 begon ik met een cursus beeldverwerking. Theo, bedankt voor alles wat

ik tijdens en na de cursus van je heb mogen leren maar bovenal bedankt voor de pret-

tige en buitengewoon vruchtbare samenwerking die als vanzelf daaruit volgde. De kennis

opgedaan tijdens mijn studie te samen met hetgeen dat ik van jou heb geleerd hebben de

belangrijkste bouwstenen gevormd voor dit proefschrift.

Charles, als “low profile” promotor, heb je me vaak terloops enkele tips gegeven

gedurende mijn promotie. Stuk voor stuk bleken deze van grote waarde. In de laatste

fase van de promotie heb je het manuscript van het proefschrift buitengewoon grondig

doorgenomen en vervolgens aangepaste delen nogmaals van commentaar voorzien. Dit

deed je bovendien keer op keer zo snel dat ik soms niet begreep waar je de tijd vandaan

toverde. Hartstikke bedankt hiervoor!

Peter, het is allemaal hard gegaan: van studiegenoot, mede bestuurslid van CognAC

en vriend tot student van me. Na enkele vakken bij me te hebben gedaan, ben je gestart met

je afstuderen bij me. Zo ben je gedurende het grootste deel van mijn promotieproject er op

alle mogelijke manieren intensief bij betrokken geweest. De basis voor dit proefschrift heb

ik samen met jou gelegd.

Maarten, als 1e jaars deed je een bijzonder practicum functieleer–neurale netwerken bij

me. Twee jaar later heb je, in het kader van een aantal vakken en zonder het op dat moment

te weten, meegewerkt aan de experimenten die de daadwerkelijke start betekende van het

onderzoek dat in dit proefschrift is beschreven.

Thijs, jij kwam, een paar jaar geleden alweer, met Maarten mee. Je hebt een aantal

vakken en je B.Sc. afstudeerwerk bij me gedaan. Inmiddels ben je bezig met je M.Sc. af-

studeerwerk. Helaas is dit werk gesneuveld bij de selectie voor dit proefschrift. Maar met

onder andere de projecten C-BAR/M4ART en SUIT/C-SUIT ben je van bijna het begin tot

het einde betrokken geweest bij het promotieproject.

Eva tijdens een borrel hebben we het over een mogelijke stage voor je gehad. Zo kwam

het dat je vanaf eind 2003 tot begin 2005 hard hebt meegewerkt aan diverse experimenten

die in dit proefschrift beschreven staan. Zelfs al had ik even stil willen blijven staan ik had

van jou, zo vermoed ik, de tijd niet gekregen. Met een projectvoorstel dat ik klaar had liggen
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bij de start van je afstuderen en met een duidelijke onderzoekslijn en planning voor ogen is

het erg hard gegaan met je afstuderen en zo heb je meegewerkt aan een substantieel deel

van mijn promotieproject.

Menno, min of meer toevallig kwam je tijdens m’n promotieproject tussendoor

“zeilen”. Af en toe was er een afspraak inzake je scriptie of voor het schrijven van een

artikel. In begin mei 2005, rondom de dag van het Levenslied, heb jij in één week je scriptie

afgemaakt en heb ik m’n manuscript afgemaakt. Een zeldzaam intensieve week waar ik een

bijna surrealistisch “op kamp gevoel” aan over heb gehouden.

Peter, Maarten, Thijs, Eva en Menno, wat jullie gemeen hebben is het enthousiasme

voor het onderzoek dat jullie deden. Daarbij was het nooit een probleem om een paar uurtjes

in de avond of in het weekend “door te trekken”. Het heeft bij jullie allemaal tot ongelofelijke

resultaten geleid. Jullie hebben, zonder het te weten, mijn promotie tot een succes gemaakt.

Naast jullie inhoudelijke bijdrage is het vooral de begeleiding van / het samenwerken met

jullie geweest die mijn promotie de voor mij noodzakelijke dimensie van “mensenwerk” gaf.

Zonder jullie was de wetenschap mij wellicht te eenzaam geweest. Maar ook alle andere

studenten (ik ga jullie niet allemaal opnoemen), die ik les heb gegeven of heb begeleid bij

een practicum of afstuderen; bedankt!

Iedereen van CogW bedankt! Ik heb altijd een ‘thuisgevoel’ bij CogW gehad, een be-

trokkenheid die aan de basis stond voor een prettige studeer- en werksfeer. In het bijzonder

wil ik drie mensen bedanken. Eduard en Ton, mijn waardering voor jullie beiden laat zich

niet in enkele woorden vatten, dus daar begin ik ook maar niet aan. Merijn, ik denk dat wij

in veel opzichten elkaars tegenpolen zijn, des te verrassender is het eigenlijk dat we het zo

goed met elkaar konden vinden als kamergenoten.

Vrienden, wat heb ik jullie verwaarloosd de afgelopen jaren. Herhaaldelijk heb ik

beterschap beloofd, steeds weer lukte het niet. Er is te veel in het leven dat ik wil doen.

Het blijft moeilijk te accepteren dat er fysieke en psychische grenzen zijn, maar boven alles

is het chronische tekort aan tijd een probleem. Voor mij waren jullie dan wel regelmatig uit

het oog maar nimmer uit het hart. Jullie waren mijn bakens op momenten dat het leven

voorbij schoot op een onnavolgbaar traject, met een veel te hoge snelheid.

Lieve pa, ma en zusje, met jullie als steun is geen berg te hoog of dal te diep of zij kan

overwonnen worden. Oneindig veel dank voor alles!

Egon
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